高一数学必修一函数及其性质辅导知识附习题_第1页
高一数学必修一函数及其性质辅导知识附习题_第2页
高一数学必修一函数及其性质辅导知识附习题_第3页
高一数学必修一函数及其性质辅导知识附习题_第4页
高一数学必修一函数及其性质辅导知识附习题_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1、重难点:在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法; 函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解考纲要求:了解构成函数的要素,会求一些简单函数的定义域和值域;在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;了解简单的分段函数,并能简单应用;经典例题:设函数f(x)的定义域为0,1,求下列函数的定义域:(1)H(x)=f(x2+1);(2)G(x)=f(x+m)+f(xm)(m0)2、重难点:领会函数单调性的实质,明确单调性是一个局部概念,

2、并能利用函数单调性的定义证明具体函数的单调性,领会函数最值的实质,明确它是一个整体概念,学会利用函数的单调性求最值;函数奇偶性概念及函数奇偶性的判定;函数奇偶性与单调性的综合应用和抽象函数的奇偶性、单调性的理解和应用;了解映射概念的理解并能区别函数和映射考纲要求:理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义;并了解映射的概念;会运用函数图像理解和研究函数的性质经典例题:定义在区间(,)上的奇函数f(x)为增函数,偶函数g(x)在0, )上图象与f(x)的图象重合.设ab0,给出下列不等式,其中成立的是 f(b)f(a)g(a)g(b) f(b)f(a)g(a)

3、g(b) f(a)f(b)g(b)g(a) f(a)f(b)g(b)g(a)A BCD一、函数的有关概念1函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数记作: y=f(x),xA其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域注意:1定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不

4、小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义.u 相同函数的判断方法:表达式相同(与表示自变量和函数值的字母无关);定义域一致 (两点必须同时具备)(见课本21页相关例2)2值域 : 先考虑其定义域(1)观察法 (2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (xA)中的x为横坐标,函数值y为纵坐标的点P(x

5、,y)的集合C,叫做函数 y=f(x),(x A)的图象C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法A、 描点法:B、 图象变换法常用变换方法有三种1) 平移变换2) 伸缩变换3) 对称变换4区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示5映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系

6、):A(原象)B(象)”对于映射f:AB来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。(2)各部分的自变量的取值情况(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集补充:复合函数如果y=f(u)(uM),u=g(x)(xA),则 y=fg(x)=F(x)(xA) 称为f、g的复合函数。 二、函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果

7、对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单

8、调区间与单调性的判定方法(A) 定义法: 任取x1,x2D,且x1<x2; 作差f(x1)f(x2); 变形(通常是因式分解和配方); 定号(即判断差f(x1)f(x2)的正负); 下结论(指出函数f(x)在给定的区间D上的单调性)(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数fg(x)的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 8函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)=f(x),那么f

9、(x)就叫做偶函数(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)=f(x),那么f(x)就叫做奇函数(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称利用定义判断函数奇偶性的步骤:首先确定函数的定义域,并判断其是否关于原点对称;确定f(x)与f(x)的关系;作出相应结论:若f(x) = f(x) 或 f(x)f(x) = 0,则f(x)是偶函数;若f(x) =f(x) 或 f(x)f(x) = 0,则f(x)是奇函数注意:函数定义域关于原点对称是函数具有奇偶性的必要条件首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.

10、若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1) 凑配法2) 待定系数法3) 换元法4) 消参法10函数最大(小)值(定义见课本p36页) 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间a,b上单调递增

11、,在区间b,c上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数y=f(x)在x=b处有最小值f(b);配套习题1.求下列函数的定义域: 2.设函数的定义域为,则函数的定义域为_ _ 3.若函数的定义域为,则函数的定义域是 4.函数 ,若,则= 5.求下列函数的值域: (3) (4)6.已知函数,求函数,的解析式7.已知函数满足,则= 。8.设是R上的奇函数,且当时,则当时= 在R上的解析式为 9.求下列函数的单调区间: 10.判断函数的单调性并证明你的结论11.设函数判断它的奇偶性并且求证:12 下列四组函数中,表

12、示同一函数的是( )A B C D13函数的图象与直线交点的个数为( )A必有一个 B1个或2个 C至多一个 D可能2个以上14已知函数,则函数的定义域是( )A B C D15函数的值域是( )A B C D16对某种产品市场产销量情况如图所示,其中:表示产品各年年产量的变化规律;表示产品各年的销售情况下列叙述: ( )(1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去;(2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产、销情况均以一定的年增长率递增你认为较合理的是()A(1),(2),(3) B(1),(3),

13、(4) C(2),(4) D(2),(3)17在对应法则中,若,则 , 6 18函数对任何恒有,已知,则 19规定记号“”表示一种运算,即. 若,则函数的值域是_20已知二次函数f(x)同时满足条件: (1) 对称轴是x=1; (2) f(x)的最大值为15;(3) f(x)的两根立方和等于17则f(x)的解析式是 21函数的值域是 22 求下列函数的定义域 : (1) (2) 23求函数的值域24已知f(x)=x2+4x+3,求f(x)在区间t,t+1上的最小值g(t)和最大值h(t)ABCD25在边长为2的正方形ABCD的边上有动点M,从点B开始,沿折线BCDA向A点运动,设M点运动的距离

14、为x,ABM的面积为S(1)求函数S=的解析式、定义域和值域;(2)求ff(3)的值26已知函数f(x)=2x2-mx+3,当时是增函数,当时是减函数,则f(1)等于 ( ) A-3B13 C7 D含有m的变量 27函数是( )A 非奇非偶函数 B既不是奇函数,又不是偶函数奇函数 C 偶函数 D 奇函数28已知函数(1), (2),(3)(4),其中是偶函数的有( )个A1 B2 C3 D4 29奇函数y=f(x)(x0),当x(0,+)时,f(x)=x1,则函数f(x1)的图象为 ( )30已知映射f:AB,其中集合A=-3,-2,-1,1,2,3,4,集合B中的元素都是A中元素在映射f下的

15、象,且对任意的,在B中和它对应的元素是,则集合B中元素的个数是( )A4 B5 C6 D731函数在区间0, 1上的最大值g(t)是32 已知函数f(x)在区间上是减函数,则与的大小关系是 33已知f(x)是定义域为R的偶函数,当x<0时, f(x)是增函数,若x1<0,x2>0,且,则和的大小关系是 34如果函数y=f(x+1)是偶函数,那么函数y=f(x)的图象关于_对称35点(x,y)在映射f作用下的对应点是,若点A在f作用下的对应点是B(2,0),则点A坐标是 36. 已知函数,其中,(1)试判断它的单调性;(2)试求它的最小值37已知函数,常数。(1)设,证明:函数

16、在上单调递增;(2)设且的定义域和值域都是,求的最大值38.(1)设f(x)的定义域为R的函数,求证: 是偶函数; 是奇函数.(2)利用上述结论,你能把函数表示成一个偶函数与一个奇函数之和的形式39. 在集合R上的映射:,.(1)试求映射的解析式;(2)分别求函数f1(x)和f2(z)的单调区间;(3) 求函数f(x)的单调区间. 单元测试1 设集合P=,Q=,由以下列对应f中不能构成A到B的映射的是 ( )A B C D 2下列四个函数: (1)y=x+1; (2)y=x+1; (3)y=x2-1; (4)y=,其中定义域与值域相同的是( ) A(1)(2) B(1)(2)(3) C2)(3

17、) D(2)(3)(4)3已知函数,若,则的值为( )A10 B -10 C-14 D无法确定4设函数,则的值为( )Aa Bb Ca、b中较小的数 Da、b中较大的数5已知矩形的周长为1,它的面积S与矩形的长x之间的函数关系中,定义域为( )A B C D 6已知函数y=x2-2x+3在0,a(a>0)上最大值是3,最小值是2,则实数a的取值范围是( )A0<a<1 B0<a2 Ca2 D 0a27已知函数是R上的偶函数,且在(-,上是减函数,若,则实数a的取值范围是( )Aa2 Ba-2或a2 Ca-2D-2a28已知奇函数的定义域为,且对任意正实数,恒有,则一定有

18、( )ABCD9已知函数的定义域为A,函数y=f(f(x)的定义域为B,则( )A B C D10已知函数y=f(x)在R上为奇函数,且当x0时,f(x)=x2-2x,则f(x)在时的解析式是( ) A f(x)=x2-2x B f(x)=x2+2x C f(x)= -x2+2x D f(x)= -x2-2x11已知二次函数y=f(x)的图象对称轴是,它在a,b上的值域是 f(b),f(a),则 ( )A B C D12如果奇函数y=f(x)在区间3,7上是增函数,且最小值为5,则在区间-7,-3上( )A增函数且有最小值-5 B 增函数且有最大值-5 C减函数且有最小值-5 D减函数且有最大值-513已知函数,则14 设f(x)=2x+3,g(x+2)=f(x-1),则g(x)= 15定义域为上的函数f(x)是奇函数,则a= 16设,则 17作出函数的图象,并利用图象回答下列问题:(1)函数在R上的单调区间; (2)函数在0,4上的值域18定义在R上的函数f(x)满足:如果对任意x1,x2R,都有f()f(x1)+f(x2),则称函数f(x)是R上的凹函数.已知函数f(x)ax

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论