下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、选择题1.若直线a不平行于平面,则下列结论成立的是( )A. 内所有的直线都与a异面; B. 内不存在与a平行的直线;C. 内所有的直线都与a相交; D.直线a与平面有公共点.2.已知两个平面垂直,下列命题一个平面内的已知直线必垂直于另一个平面的任意一条直线;一个平面内的已知直线必垂直于另一个平面的无数条直线;一个平面内的任一条直线必垂直于另一个平面;过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.其中正确的个数是( ) A.3 B.2 C.1 D.03.空间四边形ABCD中,若,则与所成角为( )A、 B、 C、 D、4. 给出下列命题:(1)直线a与平面不平行,则a与平面内
2、的所有直线都不平行;(2)直线a与平面不垂直,则a与平面内的所有直线都不垂直;(3)异面直线a、b不垂直,则过a的任何平面与b都不垂直;(4)若直线a和b共面,直线b和c共面,则a和c共面其中错误命题的个数为( ) (A)0 (B) 1 (C)2 (D)35正方体ABCD-A1B1C1D1中,与对角线AC1异面的棱有( )条 A 3 B 4 C 6 D 8 6. 点P为ABC所在平面外一点,PO平面ABC,垂足为O,若PA=PB=PC,则点OABCDA1B1C1D1是ABC的( ) (A)内心 (B)外心 (C)重心 (D)垂心7.如图长方体中,AB=AD=2,CC1=,则二面角 C1BDC的
3、大小为( ) (A)300 (B)450 (C)600 (D)9008.直线a,b,c及平面,下列命题正确的是( )A、若a,b,ca, cb 则c B、若b, a/b 则 a/ C、若a/,=b 则a/b D、若a, b 则a/b9.平面与平面平行的条件可以是( )A.内有无穷多条直线与平行; B.直线a/,a/C.直线a,直线b,且a/,b/ D.内的任何直线都与平行10、 a, b是异面直线,下面四个命题:过a至少有一个平面平行于b; 过a至少有一个平面垂直于b;至多有一条直线与a,b都垂直;至少有一个平面与a,b都平行。其中正确命题的个数是()11. 如图,ABCDE 是一个四棱锥,A
4、B 平面BCDE ,且四边 形BCDE为矩形,则图中互相垂直的 平面共有( ) A4组 B5组 C6组 D7组12.平行六面体ABCDA1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A3 B4 C5 D6二、填空题13.已知直线a/平面,平面/平面,则a与的位置关系为 .14已知直线a直线b, a/平面,则b与的位置关系为 .ABCP15如图,ABC是直角三角形,ACB=,PA平面ABC,此图形中有 个直角三角形16.、是两个不同的平面,m、n是平面及之外的两条不同直线,给出四个论断: m n m n 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:_.第卷一、选择题(每小题5分,共60分)题号123456789101112答案二、填空题(每小题4分,共16分)13、 14、 15、 16、 三、解答题17、已知正方体,是底对角线的交点.求证:()面; (2 )面 18.如图,在三棱锥中,分别为的中点.(1)求证:EF平面;(2)若平面平面,且,º,求证:平面平面来 19.如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(1)求证:(2) 20 如图,四棱锥的底面是正方形, 点E在棱PB上.(1)求证:平面; (2)当且E为PB的中点时,求AE与平面PDB所成的角的大小.21. 如图,在底面为平行四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 委外派遣合同范例
- 炉灶厂家供货合同范例
- 天津滨海职业学院《教育统计》2023-2024学年第一学期期末试卷
- 天津滨海汽车工程职业学院《汽车设计》2023-2024学年第一学期期末试卷
- 渠道砌筑施工方案
- 制作包装袋合同范例
- 中山劳务合同范例
- 个人树木买卖合同范例
- 兴安供热合同范例
- 妇科合作合同范例
- 人工智能与物联网技术的融合发展
- 试验样机项目总结汇报
- 2022版新课标下如何立足课程教学做好幼小衔接解读
- 班主任工作规范与政策法规
- 河南省郑州市二中共同体2023-2024学年八年级上学期期末数学试卷(含解析)
- 洛阳市2023-2024学年九年级上学期期末考试英语试题和答案
- 砂浆行业销售技巧分析
- 肠道门诊管理课件
- 小学禁毒教育教学大纲
- 北京市房山区2023-2024学年三年级上学期期末数学试卷
- 2024年中考英语二轮复习学案连词
评论
0/150
提交评论