单二极管混频器的电路包络仿真_第1页
单二极管混频器的电路包络仿真_第2页
单二极管混频器的电路包络仿真_第3页
单二极管混频器的电路包络仿真_第4页
单二极管混频器的电路包络仿真_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 单二极管混频器的电路包络仿真姓 名:指导老师: 学号: 目 录单二极管混频器的电路包络仿真5引言51混频器的混频原理52电路包络仿真方法的原理83单二极管混频器的电路包络仿真113.1外环分析123.2内环分析12线性电路分析13非线性电路分析143.3对时变频谱的进一步处理174小结19参考文献19附录20单二极管混频器的电路包络仿真摘要:介绍了单二极管混频器的混频原理,电路包络仿真方法的原理和过程,并针对单二极管混频器在本振和带通射频信号激励的情况下进行了电路包络仿真分析,并给出了matlab仿真的结果。关键词:单二极管混频器;电路包络仿真;matlab;ADS引言目前对混频电路的机辅分

2、析主要是频域法和谐波法,频域法主要适合频率较低的场合,而只适用于对周期和准周期稳态进行分析。电路包络法是谐波平衡法的一种改进,它分为两个层次,在内层使用谐波平衡法对载波进行分析,同时在外层对调制包络进行分析。通过频域方法和时域方法的内外结合,克服了它们各自存在的困难,可用来对复杂调制信号激励的射频微波电路进行分析。本文针对单二极管混频器在本振和带通射频信号激励的情况下进行电路包络仿真分析。1混频器的混频原理混频器的作用是把接收到的射频信号经过频率变换转变为易于进一步处理的中频信号,单二极管混频器的电路结构如图1所示。图1 单二极管混频器电路结构图但二极管混频器的等效原理图如图2所示,假定二极管

3、的伏安特性公式为: (1)图2 单二极管混频器的等效原理图在二极管上加直流偏压Vd,本振电压uL(t)=VLcoswLt,以及带通射频调幅信号电压uS(t)=VS(1+coswmt)coswSt,如图3所示。其中,wL,wS分别表示本振频率和信号频率,wm表示调幅信号的包络的频率,且wm<<wS。图3 本振和调幅信号激励下的波形图通常信号电压是接收机接收的微弱信号,电压幅度很小,为了获得良好的混频性能,本振功率应取较大的数值,因此有VL>> VS。可以认为二极管的工作点随本振电压而变化,将各工作点上i(t)展开为台劳级数为:(2)上式等号右边的第一项表示直流和本振以及谐

4、波电流;第三项以及以后的各项由于VS很小,可以忽略不计;把第二项分出来讨论,设二极管的电导为:(3)将式(1)代入式(3)可得: (4)由式(4)可以得出本振信号随时间做周期变化时,瞬时电导也随着时间做周期变化,而且是偶函数,称为时变电导。将它展开成傅里叶级数: (5)其中, (6) (7)g0为二极管的平均混频电导;gn为对应于本振第n次谐波的混频电导,将式(5)代入式 (2)中,略去高次项,得到混频电流为: (8)在上式中,令n=1,2,3,可以得到二极管混频电流包含多个频率分量。图4标明了向下混频时输入、输出信号的频谱变化关系。我们所关注的是中频信号是一次混频电导和信号电压相乘的结果,可

5、以通过滤波得到,即wI=wL-wS (wL>wS)或wI=wS-wL (wS>wL)图4 混频时的频率变换过程(wL>wS)2电路包络仿真方法的原理电路包络法把任意调制信号看成是一个低频动态(包络或调制)和高频动态(载波)的结合。对低频动态的响应在时域进行分析,对高频动态用单频激励下的谐波平衡法进行分析。这样,极大地减少了时域取样点数(仅对信息信号进行取样),同时,电路包络法仅在每个取样点处对射频载波进行谐波平衡仿真,降低了仿真的复杂度,从而克服了时域瞬态分析和谐波平衡分析各自独立应用时的局限性,可以胜任对任意调制信号激励的微波通信系统的分析。在谐波平衡技术中,激励信号一般为

6、单频正弦信号,各个电路变量可以表示为激励频率及其各次谐波的叠加,形式如下:其中,是恒定值。当复杂调制信号激励电路时,实际上在直流、载波的基频及各次谐波频率上都包含了调制信息,所以不再是恒定值,而是一个随时间变化的函数,反映了调制包络的变化情况。因此,用电路包络法对电路进行求解时,各个电路变量应表示成如下形式:其中,代表每个输出谐波处的任意调制频谱。这一频谱既可以表示瞬态信号或伪随机信号的连续谱,也可用来表示周期信号的离散谱线,如多频正弦信号激励的混频器或放大器的交调产物。用电路包络法执行仿真时,需要进行两个层次的分析:在外环对调制信号进行包络取样,取样间隔只需小到足以捕捉调制包络的带宽而不是射

7、频载波的带宽,即包络取样间隔为: (BW为调制信号的带宽)在内环执行谐波平衡分析,这时对非线性电路仿真的时间步长需能捕捉射频载波的带宽,与调制信息无关。即根据外环分析得到的各个离散包络取样值,在每个取样点上进行以载波为基波的谐波平衡分析,得到该取样点处直流、载波及其各次谐波的复振幅序列。完成整个调制信息周期的谐波平衡分析之后,就得到了一个完整的反映调制包络各个取样时刻的直流、载波及其各次谐波的复振幅序列。我们称这一序列为调制信号激励下的电路变量的时变频谱,这里所说的“频谱”是指直流、载波及其各次谐波的幅度和相位(复振幅),而“时变”则是指该复振幅的值是随着激励信号的包络的变化而变化的(因而是随

8、时间变化的)。图5反映了电路包络法的基本求解思想。 图5 电路包络法的基本算法思路如果要得到各电路变量的真正频谱(在载波及其各次谐波上存在着相同结构的调制信息频谱)和时间波形,必须对上述时变频谱进行进一步的处理。沿着外环分析时的时间顺序,从而得到的时变频谱中将同一阶次的谐波谱线依次取出构成一个新的时间序列,该序列就是在该次谐波处的调制包络的时间序列。对该序列进行离散傅立叶变换,就可得到以该次谐波频率为中心的调制频谱。对时变频谱进行处理得到输出信号频谱的过程如图6所示。按照这种思路,最终就可以得到复杂调制信号激励下的微波电路输出信号在基波和各此谐波处的幅度频谱和相位频谱。 图6 由时变频谱得到输

9、出信号真实频谱的过程从上述算法描述可见,虽然电路包络法使用谐波平衡法作为其解法的一部分,但由于只对载波进行单频分析,故矩阵的大小在微机上仍是可以接受的。当电路规模比较大时,可以引入稀疏矩阵方法以提高求解谐波平衡方程的效率。如图7所示为电路包络仿真法的流程图。图7 电路包络法的流程图 3单二极管混频器的电路包络仿真采用电路包络仿真方法分析混频器这样的多输入端口电路时,复杂调制信号施加于混频器射频输入端口,而单频本振施加于混频器本振端口。外环分析仍然是对调制信号的包络取样,而内环分析则是对本振和调制载波双频激励下的谐波平衡分析,这两个激励信号的幅度分别为本振幅度和外环包络取样值,可采用基于多维傅立

10、叶变换的谐波平衡法(MDFT-HB)法完成内环分析。得到的时变频谱包含射频和本振的基波及其各次谐波以及它们的各阶交调频率上的复振幅。对这种时变频谱的进一步处理,可以得到各个频率下的调制频谱(幅度谱和相位谱)。图8为单二极管混频器的等效电路图,其参量设置如下:直流偏压Vd=1V;本振电压uL(t)=10cos(6×104t);射频调幅电压uS(t)=0.5(1+cos20t)cos(3×103t);串联电阻RS=10;纯阻抗ZC=50;引线电感Ls=0.25nH;管壳电容Cs=0.2pF;结电阻的伏安特性为;势垒电容现对该单二极管混频器进行电路包络仿真分析。图8 单二极管混频

11、器等效电路图3.1外环分析在外环对调制信号uS(t)=0.5(1+cos20t)cos(3×103t)进行包络取样,此时的调制包络带宽为BW=10Hz,因而包络取样的取样频率必须满足fs20Hz,在仿真过程中取fs=21Hz,得到的包络取样结果如图9所示。图9 调制信号包络取样信号3.2内环分析在内环进行本振uL(t)和调制载波uc(t)双频激励下的谐波平衡分析,这两个激励信号的幅度分别为本振幅度和外环包络取样值,采用MDFT-HB法得到包含射频和本振的基波及其各次谐波以及它们的各阶交调频率上的复振幅的时变频谱。首先将非线性网络分解为线性子网络和非线性子网络两部分,如图8所示。其中,

12、线性子网络包含二极管的串联电容、所有的源和无源的负载导纳,非线性子网络包括二极管的结电阻和势垒电容。现分别对两个子网络进行分析。3.2.1线性电路分析由图8可知,单二极管混频器等效电路中的线性子网络由纯阻抗Zc和串联电阻Rs组成,如图10所示,下面推导该线性子网络的导纳矩阵的表达式。图10 线性子网络以端口电压V2和V1为自变量,端口电流I1和I2为因变量,则有:写成矩阵形式为: (9)即 (10)其中,I和V分别为端口电流列矩阵和端口电压列矩阵,Y为导纳矩阵,其元素称为导纳参量,各导纳参量的物理意义为: (11)根据式(11),分别令V2=0和V1=0,得到导纳矩阵的各个参量为 (12) (

13、13) (14) (15) 可见,各导纳参量均是w的函数,与交调波wk相关,即与激励的两个频率均有关系。3.2.2非线性电路分析由图8所示可知,非线性子网络由二极管的结电阻Rg和势垒电容Cj组成,如图11所示。图11 非线性子网络下面推导上图电路的电流误差向量。电路由双频激励源Vt= uL(t)+uc(t)和直流偏置Vd来共同激励,则 (16)线性子电路由其导纳矩阵表示,其端口电压和电流满足: (17)Is为右边端口上的诺顿等效电流源,其值为: (18)结电阻上的电流为,取其傅立叶变换为IG。势垒电容上的电荷可以表示为电压的函数,即 (19)取其傅立叶变换为 (20)又非线性电容上的电流为电荷

14、的时间微分,即 (21)则其傅立叶变换为 (22)其中, (23)则可以得到谐波平衡方程 (24)F(V)称为电流误差向量。本文采用牛顿迭代法来求解该方程,其迭代公式为: (25)式中,是第p次和第p+1次解向量的迭代值,是Jacobian矩阵,由式(24)可得 (26)写成矩阵形式为 (27)其中K为考虑的最大交调波次数。JF的通项为 (28)其中k和l分别为交调波的标号,当k=l时,Y11(k,l)=Y11(wk);当kl时,Y11(k,l)=0。而上式中的第二项和第三项分别为 (29) (30)式中T为双频激励信号的准周期。式(29) 和(30)中的偏微分可以分别解释为二极管的势垒电容和

15、结电阻,即 (31) (32)取=0.028,分别对Cj和Rg取准周期傅立叶变换得到频率分量Ck和Gk,k=-K,0,K,由式(27)和(28)得(33)综上所述,采用谐波平衡法的步骤如下:a.设定频域内电压V1的初始估计值V10,包含各次交调波分量的值;b.由式(31)和(32)分别得到势垒电容和结电阻的波形,并对它们做准周期傅立叶变换;c.由式(33)和(24)建立JF和F(V0) ;d.解式(25),得到电压向量新的估计值V11;e.对二极管电量和电流(由步骤b求得)做准周期傅立叶变换,并建立向量IC和IG;f.由式(24)得到F(V1) ;g.若F(V1)的幅度值已经足够小,则解已经找

16、到;否则,对其做傅立叶逆变换得到v1(t),然后从步骤b开始重复来得到V12,重复这一过程,知道迭代收敛。3.3对时变频谱的进一步处理要得到各电路变量的真正频谱(在载波及其各次谐波上存在着相同结构的调制信息频谱)和时间波形,必须对上述时变频谱进行进一步的处理。沿着外环分析时的时间顺序,从而得到的时变频谱中将同一阶次的谐波谱线依次取出构成一个新的时间序列,该序列就是在该次谐波处的调制包络的时间序列。对该序列进行离散傅立叶变换,就可得到以该次谐波频率为中心的调制频谱。按照这种思路,最终就可以得到复杂调制信号激励下的微波电路输出信号在基波和各此谐波处的幅度频谱和相位频谱。在仿真过程中,取最高交调波的次数为3,如图12所示为按谐波提取后的时域幅度谱。图12 按谐波提取后的时变频谱(幅度普)分别对直流、基波、二次交调波和三次交调波的时变频谱做傅立叶变换,得到各自的幅度频谱和相位频谱,如图13-16所示。图13 直流处的幅度频谱图和相位频谱图图14 基波处的幅度频谱图和相位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论