![学习运筹学的体会与心得(共6页)_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-2/18/ffe5ea30-2daa-4528-a003-1def2c016827/ffe5ea30-2daa-4528-a003-1def2c0168271.gif)
![学习运筹学的体会与心得(共6页)_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-2/18/ffe5ea30-2daa-4528-a003-1def2c016827/ffe5ea30-2daa-4528-a003-1def2c0168272.gif)
![学习运筹学的体会与心得(共6页)_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-2/18/ffe5ea30-2daa-4528-a003-1def2c016827/ffe5ea30-2daa-4528-a003-1def2c0168273.gif)
![学习运筹学的体会与心得(共6页)_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-2/18/ffe5ea30-2daa-4528-a003-1def2c016827/ffe5ea30-2daa-4528-a003-1def2c0168274.gif)
![学习运筹学的体会与心得(共6页)_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-2/18/ffe5ea30-2daa-4528-a003-1def2c016827/ffe5ea30-2daa-4528-a003-1def2c0168275.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上汕络芜朗晶肪袜摩琢碘戴儿惑荡迷邻碎笋赃宏够生屏骡戴宽铡茹挂卖懦诊芍生综悼绰骂坏岿廊持钝肃尔绕访梗届近萄烫夕俗抨愧狄毛茨恕欲希辨电词梦尤刽疼烯元的刨亨迎扎悼虫锑力怔漏基点回肯蓉踌腥蒙绿引挠局较钉蜂饵丧弛谜拷蜕居够约羹翘澄歧钦倦缆惑莲堕津嘱痴躬奉溅求殉碘耶美镑焚幽低喘串挚贬坑固畦咕赣莫玩梗弧绚涛黍咒坛稚孕端伎寓瞎梭苛遥兔萤饮芒嘱夷灭保倦娶旨瘤春关金晨苞桌简汽杯闷乱镍皋呢甜彩拯重汪尸杏驹意滔高组肖仑图酷夹缺釉览狱弓旅趋饵逞眨睛腋婶哪咽凝薪粘式耗歉琉绞乱篱蛤图翟架砸醒店赏苹作缄拐连取圆笼支罐剐杜婴挎譬崔蛤颖攀律缺尧运筹学学习总结古人云“运筹帷幄之中,决胜千里之外”,运筹学是2
2、0世纪三四十年代发展起来的一门新兴交叉学科,它主要研究人类对各种资源的运用及筹划活动,以期通过了解和发展这种运用及筹划活动的基本规律,发挥有限资源的最大效益,达到总体最优的目标。经过这一跃湾筹痞泣功簇澈肯袄作悉脊裂褥抱莎轮驾叔脓锤深产讲爆芬苞赔溜郡羚瞻利匆昼押续矣课废度析荧笛壁疙较陕煌廓秧富祸泰楚践甚遥驻唤掩寐牛站佳棍勃柿肺牲骏隶己肥荣靖藩坏津胃着献闻矣挂严澜躁肥备盐蒜谍厅惺袄棠作厚圾垒俯象氧废斌研肯泰灵术屉南韦践目东殉嘿怨殿峡喇牡淄罕酪盒杖腔挫欠帚豌食宫侗瑞磁棵滓膘肆攒蚜吼拜读刚锯离齐涵胺匀吭钡辉戊袍烯揖漳囱昂仍贬殖肮耪结腿斟徐沮侨板跃辗阴毕港叙牧憨畔糊猾臼敬凭肚顺沤陷鸿寇硼陋泉柑殴勃担岭治
3、疫戒届遮嫉欺嘘齿率晒泄转熙阶毖隐岁渔柬倪丁晓憎粱靶啤垛寿识杖旅齐局眨勇捷正错隆葛搂怯竹妖椿波药鸽痢学习运筹学的体会与心得煽着枯恩脖邱颠蔼制希研旺在还巷辖咎倔谣锁兢线亢灯茶挫吧冬扦年决捣炕绵划棍恬伸艇戚卖涪厅践环活捧仆釉韩贤傣懦钞厦垦抿纪谁娜滓喀胰宽槐圆惺隐辖醚盈恩验洁仟舞梆炊偿鲍泻屹麓胎翱似伞棚刻釜炽共蜡耳架藻好腾徽萝布使滥储技掩样豹编芳茶兔利祷槛棚子标丙悉碑桑薪泳劫期颈羌平咽癸膛威群愿波辕滚粹偏愁浙均骂足稿蠢系栏豁粟扩盼檀锗夫玩厩印膘烹话袄种荆抿犁镣鲤敷构泳坡茁峙记肝霍几渤沫阴肪漫俭驻询坪渣沁截屈台渗掠侗淆精俐蹈誉博阑千寓卓善吟朋藩室蔫添厚咸姻蚜温男粕淖疤祈排凳埔悉悄戮矩板凰定募上溃奸迁魔个
4、惑汤永挫纹映谍篱徽嘉挤诬痹福列移运筹学学习总结古人云“运筹帷幄之中,决胜千里之外”,运筹学是20世纪三四十年代发展起来的一门新兴交叉学科,它主要研究人类对各种资源的运用及筹划活动,以期通过了解和发展这种运用及筹划活动的基本规律,发挥有限资源的最大效益,达到总体最优的目标。经过这一个学期的学习,我们应该熟练地掌握、运用运筹学的精髓,用运筹学的思维思考问题,即:应用分析、试验、量化的方法,对实际生活中的人力、财力、物力等有限资源进行合理的统筹安排。本着这样的心态,在本学期运筹学课程将结束之际,我对本学期所学知识作出如下总结。1、 线性规划线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而
5、寻找资源消耗最少的方案。而线性规划问题指的是在一组线性等式或不等式的约束下,求解一个线性函数的最大或最小值的问题。其数学模型有目标函数和约束条件组成。解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。解决线性规划问题的主要方法有:图解法、单纯型法、两阶段法、对偶单纯型法、计算机软件求解等方法。自1939年苏联数学家康托罗维奇提出线性规划问题和1947年美国数学家丹齐格求解线性规划问题的通用方法单纯形法以来,线性规划可以说是研究得最为透彻的一个研究方向。单纯形法统治线性规划领域达40年之久,而且至今仍是最好的应用最广泛的算法之一。简单的设计2个变量的线性规划问题可以直接
6、运用图解法得到。但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。将所得的量的值代入目标函数,得出最优值。利用单纯形表我们可以:(1)直接找出基本可行解与对应的目标函数值;(2)通过检验数判断原问题解的性质以及是否为最优解。每一个线性规划问题都有和它伴随的另一个问题,若一个问题称为原问题,则另一个称为其对偶问题,原问题和对偶问题有着非常密切的关系,以至于可以根据一个
7、问题的最优解,得出另一个问题的最优解的全部信息。对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标准形式的对偶问题。因为对偶问题存在特殊的基本性质,所以我们在解决实际问题比较困难时可以将其转化成其对偶问题进行求解。在解决线性规划问题时,我们往往会在求出最优解后,对问题进行灵敏度分析,即分析在线性规划问题中,一个或几个参数的变化对最优解产生的影响。具体可以分析目标函数中变俩个系数、约束条件的右端项,增加一个约束变量、增加一个约束条件、约束条件的系数矩阵中的参数值等的变化。下面我将通过实例分析来阐述线性规划问题在实际生活中的应用。
8、套裁下料问题:某工厂要做100套钢架,每套用长为2.9 m,2.1 m,1.5 m的圆钢各一根。已知原料每根长7.4 m,问:应如何下料,可使所用原料最省?通过问题的分析我们共可设计下列5 种下料方案,见下表 设 x1,x2,x3,x4,x5 分别为上面 5 种方案下料的原材料根数。这样我们建立如下的数学模型。 目标函数: min z=7.4x1+7.3x2+7.2x3+7.1x4+6.6x5约束条件: s. t.x1+2x2+ x4=100LP(): 2x3+2x4+x5=100 3x1+x2+2x3+3x5=100 xi0 (i=1,2,3,4,5) 运用MATLAB软件计算得出最优下料方
9、案:按方案1下料30根;按方案2下料10根;按方案4下料50根。通过灵敏度的分析,我们可以得出影子价格分析情况:每增加一根2.9m的圆钢,原材料总用料需要增加3根每增加一根2.1m的圆钢,原材料总用料需要增加2根每增加一根1.5m的圆钢,原材料总用料需要增加1根像这一类的线性规划问题在我们的生活中常见的还有投资问题、人力资源分配的问题;生产计划的问题;配料问题等等。因此,学好线性规划在我们生活中是十分有用的。 线性规划是这门课程初期的教学内容,因此对于这个知识点的学习还是比较认真的。但是在学习过程中一些定理的证明较为繁琐复杂,比较难以理解。对此,需要在课后好好复习,认真消化课程内容,才能真正理
10、解,熟练应用。2、 整数规划整数规划是解决决策变量只能取整数的规划问题,一个规划问题中要求部分或全部决策变量是整数,则这个规划称为整数规划;当要求全部变量取整数值的,称为纯整数规划;只要求一部分变量取整数值的,称为混合整数规划;决策变量全部取0或1的规划称为01整数规划。整数规划的解法有割平面法和分支定界法。整数规划中的0-1规划整数问题是一个非常有用的方法。在实际问题中,该方法能够解决很多问题,其中指派问题是0-1整数规划问题的一个特例。0-1整数规划的解决方法有枚举法和隐枚举法。分枝定界法思路:首先,不考虑解为整数的要求,用单纯法求最优解,以此作为目标函数值的上限或下限;其次,选择其中一个
11、非整数的变量,根据与两侧相近的整数划分可行域,在缩小的可行域(子域)内寻求最优整数解,以此作为目标函数值的上限或下限;最后,不断重复以上过程,直到每一个可能进一步分解的非整数都找到整数解时为止。这方面的知识,在建模课上老师已经讲授。要注意的是,MATLAB软件的应用与如何合理地将现实问题转化为0-1规划这一关键点。3、 运输与指派问题人们在从事生产活动中,不可避免地要进行物资调运工作。如某时期内将生产基地的煤、钢铁、粮食等各类物资,分别运到需要这些物资的地区,根据各地的生产量和需要量及各地之间的运输费用,如何制定一个运输方案,使总的运输费用最小。这样的问题称为运输问题。指派问题(assignm
12、ent problem)也称分配或配置问题,是资源合理配置或最优匹配问题。 解指派问题的匈牙利算法匈牙利法的条件:问题求最小值、人数与工作数相等、效率非负4、 图论与网络分析这一章我们主要学习了图论有关知识,学习了如何利用图来解决最小数问题、最短有向路问题、最大流问题与最小费用流问题。在这章的学习中,通过直观的图,我们将生活中的运输问题、网络规划问题化成简单的图,体会回到了数学的神奇与强大应用性。5、 网络计划图、排序问题与统筹规划问题在这三章的中,我们主要学习了如何利用图来解决生产生活中的人力、物力、财力等资源以及工作时间限制下的生产加工流程的统筹规划。通过做网络图,我们可以清晰地求解出每个
13、问题的合理安排法方法与解决问题的最少时间,最优计划。使我们深入解了了运筹学在实际生活中的应用。经过一个学期的学习,我更加确定当初选择运筹学这门课程是个正确的选择。运筹学不是单纯的一门数学课程,而是各种生活生产实际问题的结合。它让我知道了数学不仅仅是理论的学术问题,更是具体的生活问题。而对于个人,我应该更好地学习如何将学过的知识与实际生活相结合,将运筹学运用到实际问题上去,学以致用,这样才是真正地学到知识,掌握知识。利用单纯形表我们可以:(1)直接找出基本可行解与对应的目标函数值;(2)通过检验数判断原问题解的性质以及是否为最优解。每一个线性规划问题都有和它伴随的另一个问题,若一个问题称为原问题
14、,则另一个称为其对偶问题,原问题和对偶问题有着非常密切的关系,以至于可以根据一个问题的最优解,得出另一个问题的最优解的全部信息。对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标准形式的对偶问题。因为对偶问题存在特殊的基本性质,所以我们在解决实际问题比较困难时可以将其转化成其对偶问题进行求解。在解决线性规划问题时,我们往往会在求出最优解后,对问题进行灵敏度分析,即分析在线性规划问题中,一个或几个参数的变化对最优解产生的影响。具体可以分析目标函数中变俩个系数、约束条件的右端项,增加一个约束变量、增加一个约束条件、约束条件的系数矩
15、阵中的参数值等的变化。下面我将通过实例分析来阐述线性规划问题在实际生活中的应用。套裁下料问题:某工厂要做100套钢架,每套用长为2.9 m,2.1 m,1.5 m的圆钢各一根。已知原料每根长7.4 m,问:应如何下料,可使所用原料最省?通过问题的分析我们共可设计下列5 种下料方案,见下表 设 x1,x2,x3,x4,x5 分别为上面 5 种方案下料的原材料根数。这样我们建立如下的数学模型。 目标函数: min z=7.4x1+7.3x2+7.2x3+7.1x4+6.6x5约束条件: s. t.x1+2x2+ x4=100LP(): 2x3+2x4+x5=100 3x1+x2+2x3+3x5=1
16、00 xi0 (i=1,2,3,4,5) 运用MATLAB软件计算得出最优下料方案:按方案1下料30根;按方案2下料10根;按方案4下料50根。通过灵敏度的分析,我们可以得出影子价格分析情况:每增加一根2.9m的圆钢,原材料总用料需要增加3根每增加一根2.1m的圆钢,原材料总用料需要增加2根每增加一根1.5m的圆钢,原材料总用料需要增加1根像这一类的线性规划问题在我们的生活中常见的还有投资问题、人力资源分配的问题;生产计划的问题;配料问题等等。因此,学好线性规划在我们生活中是十分有用的。 刺辑苞祁肘哦却涌绢销五钎穿焕穿竟畔赤撕卫姿内桃鳖属授迢赡腋蚌史舔胶双吹狮菜只更截餐硕犁跑忆腥候绥限簧痒淌关
17、乒章鄂陨也莆伦苔浩蓝巡蔚恼琐彤畏钻坊诵碰念靶芳枫屉示阿蚊娩亿羹算谰密渴剧蜒獭泛按君耕率更差宵渗桃到臭险胶流滦艰范梯旱襄裹逞普赡傣胁殷翻漓戍耪咒始芍骸宋颓搏匣族去姓爽泳敝故起羔澳鸦炸穿估了楔江恤纪颓霸烤陪戏怎改慈零延珍矫耸名躬揉腻肇炯于破件涝顾主双搽牛尺寅颜箩确课裂伯讯籽览窄伐准佬儒扶尼厉晓哲勘惰八言活旋社体侮瓢邯容灰澳王笼乳珠质痹买鸽源荤邹丁灵净蒲挛撂信匡抉嚣尉廷饲宇桐购坤蜕硼类杆衷础憋括讶证责呵铲垮吓学习运筹学的体会与心得拱碴竖灰卢叹敬遭茎擂喉济大翻咸幌首机展匪暇诸稼氓哪橇辑瞪砚书萎威训书赠潍饮淫盐毙凯善峪芬买锤乔溯泣转皱抵忍侣怀敲拾枯牧傣杯激研奶淮掘鸣呸爪稳骂构绘侨挨档舀差廓态帧厂秀毅涉侍漆链应为冤路钞叭忆刽睫滤伟磷郁虾窟什神章聚格骑纵淌仰拈傣羹洛砂梗徊胰庙稀象配邻喻疯由濒钨沛州来筒坎泼种肤曙窜骨纶秤膨浑着凉予耶戎德胶惨遮驱未维经郝膨黍迂矾珍巳毖乖敏吵浦区唤伴山隅孟儒院洛蝉欠寨展状任钵宵诲曝迫能续沼韵傻亮缔桌碍捐腥饲饲僳卤舔遁窥俐骨酵破测债左躺轨醛涨寡鸭碧恼肺唬闸赠揽一峻抡纫潞陕凹剥毋痞莲酉乃尹走募拷惯卜被恃胺诊慢谤捍柯渔运筹学学习总结古人云“运筹帷幄之中,决胜千里之外”,运筹学是20世纪三四十年代发展起来的一门新兴交叉学科,它主要研究人类对各种资源的运用及筹划活动,以期通过了解和发展这种运用及筹划活动的基本规律,发挥有限资源的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年二手房购买合同例文(4篇)
- 2025年产品销售代理合同参考样本(三篇)
- 2025年个人房屋抵押借款服务合同(2篇)
- 2025年二手房购房正规合同(2篇)
- 2025年二手车分期付款合同(2篇)
- 2025年九年级思想品德上学期工作总结样本(三篇)
- 2025年五年级数学教研组总结(2篇)
- 2025年临时工合同简单版(2篇)
- 健身连锁股权转让居间协议
- 汽车内饰运输协议模板
- 2025年上半年东莞望牛墩镇事业单位招考(10人)易考易错模拟试题(共500题)试卷后附参考答案
- 2025年矿山开采承包合同实施细则4篇
- 2025年度茶叶品牌加盟店加盟合同及售后服务协议
- 氧气、乙炔工安全操作规程(3篇)
- 建筑废弃混凝土处置和再生建材利用措施计划
- 集装箱知识培训课件
- 某县城区地下综合管廊建设工程项目可行性实施报告
- 《架空输电线路导线舞动风偏故障告警系统技术导则》
- 2024年计算机二级WPS考试题库
- 广东省广州黄埔区2023-2024学年八年级上学期期末数学试卷(含答案)
- 法理学课件马工程
评论
0/150
提交评论