12、直角三角形1_第1页
12、直角三角形1_第2页
12、直角三角形1_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、北师大数学九年级上课 题1.2、直角三角形(一)课型新授课教学目标1、要求学生掌握直角三角形的性质定理(勾股定理)和判定定理,并能应用定理解决与直角三角形有关的问题。2、了解逆命题、互逆命题及逆定理、互逆定理的含义,能结合自己的生活及学习体验举出逆命题、互逆命题及逆定理、互逆定理的例子。3、进一步掌握推理证明的方法,拓发展演绎推理能力,培养思维能力。教学重点直角三角形的性质和判定定理教学难点勾股定理逆定理的证明方法。教学方法教学后记教 学 内 容 及 过 程教师活动学生活动一、勾股定理1让学生到黑板上画出他们观察到的生活中的直角三角形,并分别说出它们的作用在哪里。2高度评价学生的参与热情和学习

2、成果,激励学生继续努力。可以把其中很有创意的发现以该学生名字命名,以此保护学生的积极性。3总结学生的“成果”,启发学生思考既然学生所找的三角形同属直角类,那么它们还有没有其他的共性? 4启发学生回忆以前用数方格和割补图形的方法得到的关于直角三角形三边关系的结论。让学生画出一个直角三角形并测量三边长,验证结论的正确性。5.讲解勾股定理,讲述有关的数学史,让学生对勾股定理的发现有所了解。二、勾股定理的逆定理1利用学生画在黑板上的直角三角形提出问题:你如何证明你找的就是直角三角形呢? 2引导学生思考勾股定理的反面:在一个三角形中,当两边的平方和等于第三边的平方时,这个三角形是不是直角三角形? 3让学

3、生画三角形并测量三边长长度。4借此机会向学生说明命题的正确性一定要通过严格的逻辑证明来说明,不能凭直观猜测,在做题的过程中要注意监控自己的思路,做到步步有据,说理充分,培养学生的理性精神。5对这个比较有挑战性的问题,首先让“呼之欲出”的学生说说他们的思路;并让学生试着给出比较详细的说明。6表扬学生的积极发言,保护学生的积极性,并对他们的回答予以剖析,引导学生继续思考。7点评学生的证明,并作为和学生平等的一分子给出证明,不把自己的证明作为难一的权威和正确的答案,让学生可以继续寻找其他的证法。8比较勾股定理和勾股定理逆定理的表述方式有什么不同,让学生分析它们各自的条件和结论分别是什么,蕴含的因果关

4、系分别是什么。三、互逆命题、互逆定理1把准备好的卡片随机地发给学生,学生按卡片的种类被分成A、B两组,要求拿A类卡片的学生a说出自己卡片上的内容,然后寻找拿B类卡片的与自己的命题相反的同学b。b要自己主动站起来,并说出自己卡片上的命题是什么,由学生a来判断他(她)和自己是否在一组。(注意:A、B类卡片上的内容要出现适量的不能构成互逆命题、互逆定理的例子,但不能太多。这样既有利于学生分析、辨别互逆命题、互逆定理,又有利于他们从正例中归纳、总结出互逆命题、互逆定理的内涵)。2对学生的表现予以表扬、肯定和鼓励。然后提问拿B卡片的找到组的学生:你是如何判断和谁在一组的? 3提取学生回答中的合理性成分,

5、总结归纳,然后提问拿A类卡片的学生:你是如何判断b是否和你在同一组? 4肯定学生的认识,提问拿B类卡片的但没找到组的学生:为什么他们的命题和A类同学的命题不能互相构成反面?5肯定所有学生的发言和参与,然后让学生试着自己归纳总结概括出什么是互逆命题、互逆定理。6肯定学生的回答,并在此基础上进一步升华,给出严谨的表述。7结合刚刚讲过的勾股定理及其逆定理,应用互逆命题、互逆定理的含义进行分析,加深学生对这一方面的认识。8结合游戏中的命题向学生说明:一个命题是真命题,它的逆命题不一定是真命题。让学生体会命题变换的辩证关系。9让学生回忆自己曾学到的互逆命题和互逆定理,说出教师难备的一些命题的逆命题并判断

6、真假。10布置作业及下节课学生要准备的东西。作业1、基础作业:P20页习题1.4 1、2、3。2、拓展作业:目标检测3、预习作业:P21-22页 做一做板书设计: 12 直角三角形勾股定理: 互逆定理1踊跃地到黑板上画出自己收集到的直角三角形,并说出它们的用处。2受到老师的表扬和鼓励,很有成就感,增加了学习数学、探索数学、研究数学的兴趣。3听取老师的分析,找出自己“成果”的优缺点;积极思考直角三角形的共性,有些学生会有困难,不知从哪里人手。4动手用直尺和圆规画一个直角三角形,并测量三边的长度,结合以前的知识,验证勾股定理。5.学会勾股定理并对有关的数学史有所了解,对数学的兴趣增加。1试图找出理

7、由说服别人自己找的就是直角三角形,但有些困难。2在老师的启发下,“觉得”命题是正确的,但不能给出严谨的证明。3画三角形并测量三边长。4进一步体会证明的必要性,知道要有意识地检查自己的思路,要做到说理充分,言必有据。知道这样做对逻辑思维的养成有一定的促进作用。5因为所面对的问题比较有挑战性,因此学生很有参与的积极性,试图解决,说出自己的想法。6受到鼓励的学生更加有参与教学朗积极性,没有想出来的学生在其他同学的启发和老师的引导下继续思考。7用到第一节学习过的三角形判定定理,听取老师的讲解,学会勾股定理逆定理的证明,知道逆定理的内涵,并为继续探索其他的证法作好了准备。8跟随老师的思路,思考、分析两个

8、互逆定理的条件、结论分别是什么,它们之间的关系是什么。1非常愿意做这个游戏,参与热情很高。在老师的指导下,知道游戏的规则,都在积极得思考自己手里命题的“反面”是什么,想要找到与自己在同一组的同学。游戏开始后,按规则去找自己的同伴,有的顺利,有的不顺利,因为教师的特别用意,很可能会出现两位学生与同一位学生组对的情况,这时候不光是。同学,其他同学也会积极地判断到底谁是谁非。2回答老师的问题,也许不会说的很清楚,但有感性的认识,如:会觉得那个命题的反面就是自己手里命题的意思。3在老师的总结之后,会说得比较理性一些,但还是不能给出严谨的说明。4刚开式会觉得自己的命题和。同学的构成一组,但和真正的“反面”命题一比,又觉得自己的命题不太像,原因可能不清楚。5总结概括互逆命题、互逆定理的含义,除个别之外,对含义的理解基本正确。6认真听讲,加深理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论