旋转知识点归纳_第1页
旋转知识点归纳_第2页
旋转知识点归纳_第3页
旋转知识点归纳_第4页
旋转知识点归纳_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、知识点1:旋转的定义及其有关概念OBA图1在平面内,将一个图形绕一个定点O沿某个方向转动一个角度,这样的图形运动称为旋转,定点O称为旋转中心,转动的角称为旋转角;如果图形上的点P经过旋转到点,那么这两个点叫做这个旋转的对应点. 如图1,线段AB绕点O顺时针转动得到,这就是旋转,点O就是旋转中心,都是旋转角.说明: 旋转的范围是在平面内旋转,否则有可能旋转为立体图形,因此“在平面内”这一条件不可忽略.决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向.知识点2:旋转的性质由旋转的定义可知,旋转不改变图形的大小和形状,这说明旋转前后的两个图形是全等的.由此得到如下性质:经过旋转,图形上的

2、每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同.任意一对对应点与旋转中心的连线所成的角都是旋转角.对应点到旋转中心的距离相等.对应线段相等,对应角相等.图2例1 、如图2,D是等腰RtABC内一点,BC是斜边,如果将ADB绕点逆时针方向旋转到的位置,则的度数是()分析:是由ADB旋转所得,可知ADB,AD=,DAB=,DAB+DAC=,+DAC=,故选评注:旋转不改变图形的大小与形状,旋转前后的两个图形是全等的,紧紧抓住旋转前后图形之间的全等关系,是解决与旋转有关问题的关键.知识点3:旋转作图1.明确作图的条件:(1)已知旋转中心;(2)已知旋转方向与旋转角.2.理解作图的

3、依据:(1)旋转的定义: 在平面内,将一个图形绕一个定点O沿某个方向转动一个角度的图形变换叫做旋转;(2)旋转的性质:经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度,任意一对对应点与旋转中心的连线所组成的角都是旋转角,对应点到旋转中心的距离相等.3.掌握作图的步骤:(1)分析题目要求,找出旋转中心、旋转角;(2)分析图形,找出构成图形的关键点;(3)沿一定的方向,按一定的角度,通过截取线段的方法,找出各个关键点;(4)连接作出的各个关键点,并标上字母;(5)写出结论.例2 如图3,小明将ABC绕O点旋转得到,其中点分别是A、B、CABC的边AC、BC及旋转中心O擦去(不留痕迹

4、),他说他还能把旋转中心O及ABC的位置找到,你认为可以吗?若可以,试确定旋转中心及的位置;如不可以,请说明理由.分析:本题的关键是要学生先确定旋转中心的位置.根据“对应点到旋转中心的距离相等”这一特征,可推断出旋转中心是对应点连线(和)的垂直平分线的交点.这样旋转中心就可以确定了,从而ABC的位置也就可以确定了.解:连接,,分别作,的垂直平分线,相交于O点,则O关于点的对应点,连接,则的位置就确定了.如图4所示.评注:旋转角相等及对应点到旋转中心的距离相等是解决这类问题的关键.图4CBAO图3考点4:钟表的旋转问题钟表的时针与分针每时每刻都以轴心为旋转中心作旋转运动,其中时针12小时旋转一周

5、,则每小时旋转这样时针每分钟旋转分针每小时旋转一周,则每分钟旋转例3 从1点到1点25分,分针转了多少度角?时针转了多少度角?1点25分时时针与分针的夹角是多少度?分析:从1点到1点25分,分针与时针都转了25分钟,所以分针旋转的角度为时针旋转的角度为1点整的时候,分针与时针的夹角为,分针与时针分别同时旋转与后,分针与时针的夹角为解:分针旋转的角度为时针旋转的角度为分针与时针的夹角为评注:(1)时针每分钟旋转;(2)分针每分钟旋转这两个条件是旋转问题中的隐含条件,也是解决此类问题的突破口解读生活中的旋转一. 旋转及其基本性质在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动

6、称为旋转,这个定点称为旋转中心,转动的角称为旋转角.(1) 旋转前后两个图形的对应点到旋转中心的距离相等;(2) 对应点与旋转中心的连线所成的角彼此相等.图形旋转的主要因素是旋转的方向和旋转的角度,图形在旋转过程中,图形中的每一点都按同样的方向旋转了相同的角度.图形在旋转后点的位置改变,但线段的长度不变,对应点到旋转中心的距离不变,每对对应点与旋转中心连线所成的角都相等.总结:旋转过程中,每一个点都绕旋转中心沿相同的方向旋转了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.二. 旋转前后两个图形的比较图形是由点组成的,图形中的主要元素有线段和角,也有一

7、些其他可度量的元素,所以从这两个方面加以分析.旋转的特点有以下几个方面:(1) 旋转前后两个图形的形状和大小没有发生改变,位置发生了改变;(2) 对应线段相等,对应角相等;(3) 每对对应点与旋转中心连线所成的角都是相等的,它们都是旋转角.三. 旋转作图1.旋转作图的依据是:图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点到旋转中心的距离相等.(1) 图形原来所在的位置;(2)旋转中心;(3)图形旋转的方向;(4)图形的旋转角度.3.旋转作图的具体步骤为:(1) 分析题目的要求,找出旋转中心、旋转角;(2) 分析所作的图形,找出构造图形的关键点;(3) 沿一定的方向,按一定的角度,

8、通过攫取线段的方法,旋转各个关键点。连:即连图形中的每一个关键点与旋转中心;转:即把连线按要求绕旋转中心转过一定角度;截:即在角的另一边上截取关键点到旋转中心的距离,得到各点的对应点;为了避免作图时的混乱,每个点独立完成后,再进行下一个点的旋转;(4)连接所作的各个关键点,并标上相应的字母;(5)写出结论(方格纸内作图可以略写结论).(1)已知原图、旋转中心和一对对应点,求作旋转后的图形;(2)已知原图、旋转中心和一对对应线段,求作旋转后的图形;(3)已知原图、旋转中心和旋转角,求作旋转后的图形.例1如图1,是等腰内一点,是斜边,如果将绕点逆时针方向旋转到的位置,则的度数是()图1解析:根据旋

9、转性质可知ABD,BAD=,AD=,BAD+CAD=,+CAD=,=,故应选图2评注:本题应用旋转性质得到两三角形全等,然后根据全等三角形的性质和三角形内角和定理求解即可.例2如图2,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()解析:整个图形可以看作是图形的五分之一绕中心位置,按照同一方向连续旋转、和原来图形共同组成的,所以本题应选。评注:解决本题的关键是通过动手操作和动脑分析,找到“基本图案”,并分析得到旋转角,对本题来说,只要找到了“基本图案”,所有的旋转角一定都是的倍数.例3在如图3的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点 都在格点上(每个小方

10、格的顶点叫格点)(1)画出向平移4个单位后的;图4图3(2)画出绕点顺时针旋转后的,并求点旋转到所经过的路线长分析:在作图的时候要找到关键点的位置,本题有两步作图,第一步是平移,第二步是旋转,按照平移和旋转的作图步骤容易得到最后的图形.点旋转到所经过的路线长为以为半径,圆心角为的弧长.解:(1)画出 (2)画出连结,点A旋转到所经过的路线长为评注:在方格纸上作简单的旋转图形,旋转角度通常是,这样旋转前后图形的对应点与旋转中心的连线互相垂直,实际上就是在方格纸上找垂线,再根据旋转的性质找线段相等,从而确定每个对应点.学好旋转的三个要点旋转在实际生活中随处可见因此,学好旋转的知识有利于我们解决实际

11、问题,学习时应注意把握好以下几点:一、正确理解旋转的概念在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点叫做旋转中心旋转不改变图形的形状和大小ACDBEP图1理解这个概念应注意以下两点:1旋转和平移一样,是图形的一种基本变换;2图形旋转的决定因素是旋转中心和旋转的角度例如图1,是等腰直角三角形,是上一点,经过旋转后到达的位置(1)旋转中心是哪一点?(2)旋转了多少度?(3)若是的中点,那么经过上述旋转后,点旋转到了什么位置?解:(1)点是旋转中心;(2)顺时针旋转了;(3)点旋转到了的中点二、掌握旋转的特征图形中每一点都绕着旋转中心旋转了同样大小的角度;对

12、应点到旋转中心的距离相等,对应线段、对应角都相等;旋转前后图形的大小、形状都不发生变化图2例2如图2所示,是国际奥林匹克运动会会旗(五环旗)的标志图案,它是由五个半径相同的圆组成的,它象征着五大洲的体育健儿,为发展奥林匹克精神而团结起来,携手拼搏观察此图案,结合我们所学习的图形变换知识,完成下列题目:(1)整个图案可以看做是什么图形?(2)此图案可以看做是把一个圆经过多次什么变换运动得到的?解:(1)这个图案是轴对称图形(2)既可以看做是由一个圆经过4次平移得到的,又可以看做是一个圆经过4次旋转得到的(你能分析吗,提示:旋转中心可以不在图案上)三、会寻找旋转中心知道了旋转中心及旋转角,可以作出

13、一个图形旋转后的图形那么知道一个图形及其旋转后的图形时,如何确定旋转中心呢?确定旋转中心的关键是确定两个图形上的两组对应点构成的对应线段的旋转中心,由旋转特征可知,这两组对应点的旋转中心就是整个图形的旋转中心由旋转特征可知,如果已知图形上点关于旋转中心的对应点是,则有,所以点必在线段的垂直平分线上;如果图形上点关于旋转中心的对应点是,则,所以点必在线段的垂直平分线上这样两个对应点和以及和连线的垂直平分线的交点就是旋转中心例3如图3所示,四边形绕某点旋转后到四边形,你能确定旋转中心吗?试一试分析:我们可以用待定位置法假定点就是旋转中心,由于对应点到旋转中心的距离相等,则有,从而一定是线段和线段的

14、垂直平分线的交点上解:如图3所示,连结图1图4分别作的垂直平分线,两直线交于点则点就是旋转中心例2如图4,是等边三角形,点分别是的中点,四边形和四边形都是正方形(1)试确定正方形绕某点旋转得正方形的旋转中心(2)正方形旋转多少度时可以与正方形重合?分析:因为四边形和四边形都是正方形,所以情况较多,我们只选择其中一个讲解,其它情况请同学们自己探索,欢迎你把自己的探索成果告诉我们解:(1)选择和作为对应线段(点对应点,点的对应点为点)连接,则易知,连接点与线段的中点并延长,连接点与线段的中点并延长,两直线相交于点,则有垂直平分垂直平分,则点就是旋转中心为旋转角(2),(对顶角)又,所以所以旋转角所

15、以当正方形绕点顺时针旋转时,可与正方形重合旋转坐标新意多求旋转后点的坐标的问题是学习旋转是常见的问题。这类问题新意颇多,下面举例说明,供同学们学习时参考1、求旋转90°后点的坐标例1、如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA,则点A的坐标是分析:在平面直角坐标系中,先做出OA绕点O顺时针旋转90°后得到的线段OA,然后根据点A的特征求出点A的坐标解:如图所示,做出OA绕点O顺时针旋转90°后得到的线段OA,则A的坐标为(4,1)规律总结:已知点的坐标为,为坐标原点,连结,将线段绕点按顺时针方向旋转90

16、°得,则点的坐标为,将线段绕点按逆时针方向旋转90°得,则点的坐标为,2、求旋转180°后点的坐标例2、在平面直角坐标系中,已知点A(2,3),若将OA绕原点O逆时针旋转180°得到0A,则点A在平面直角坐标系中的位置是在A 第一象限 B 第二象限 c 第三象限 D 第四象限分析:将OA绕原点O逆时针旋转180°得到0A,则点A与点A关于原点成中心对称,根据点A的坐标即可求出点A的坐标,从而确定A在平面直角坐标系中的位置解:因为OA绕原点O逆时针旋转180°得到0A,所以点A与点A关于原点成中心对称,又因为点A得坐标为(2,3),所以

17、点A的坐标为(-2,-3),所以点A在第三象限,选C规律总结:已知点的坐标为,为坐标原点,连结,将线段绕点按顺时针方向(或逆时针方向)旋转180°得,则点的坐标为, 3、求旋转135°后点的坐标例3、点A的坐标为(,0),把点A绕着坐标原点顺时针旋转135º到点B,那么点B的坐标是 _ 分析:如图所示,在平面直角坐标系中,小格点正方形的边长为1,在图中先通过旋转作图确定点B的位置,然后再求出它的坐标解:点A的坐标为(,0),则点A在x轴的正半轴上,把点A绕着坐标原点顺时针旋转135º到点B,则点B在第三象限且在第三象限的角平分线上,由于OB=OA=,所以

18、点B就在边长为1的格点正方形的顶点上,则点B的坐标为(-1,1)4、求多次旋转后点的坐标例4、如图,在直角坐标系中,已知点,对连续作旋转变换,依次得到三角形、,则三角形的直角顶点的坐标为_析解:认真观察图形可知,连续作旋转变换依次得到三角形的直角顶点的坐标为(0,0),三角形的直角顶点的坐标未知,三角形的直角顶点的坐标为(12,0),三角形的直角顶点的坐标为(12,0),由此可见其中的规律:三角形的直角顶点的纵坐标总是0,二横坐标每经过三次变换增加12,依此类推三角形的直角顶点的坐标为(36,0)点评:解决本题的关键是找出连续作旋转变换中三角形的直角顶点的坐标的变化规律,要求同学们具有一定的探

19、索和想象能力。旋转常见错解剖析一、分析旋转作图时语言叙述不准确例1分析图1的旋转现象.错解:本题是由图案的绕图案中心分别旋转四次,每次旋转90°形成的.剖析:分析旋转图案的方法:(1)找准旋转图案的基本图案,本题取图案的或;(2)找出旋图1转中心;(3)算准旋转的角度.正解:是由一个梯形绕图案中心依次旋转90°,180°,270°而形成的,也可以看做是由两个相邻的梯形绕图案的中心旋转180°而形成的.二、弄错图形的旋转方向例2如图2,将网格中的ABC绕C逆时针旋转90°,画出旋转后的图形.AAA/A/BBB/B/CCED图2图3错解:作ACD=BCE=90°并截取CA/=CA,CB/=CB;连结CB/、B/A/、CA/就得到了旋转后的图形CB/A/.剖析:这种作法显然没有注意到是逆时针方向旋转,同学们可以按照逆时针方向作一下,看看是不是与图3所示一样.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论