版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、易拉罐形状和尺寸的最优设计组员:邢登峰,张娜,刘梦云摘要研究易拉罐形状和尺寸的最优设计可以节约的资源是很可观的。问题一,我们通过实际测量得出(355ml)易拉罐各部分的数据。问题二,在假设易拉罐盖口厚度与其他部分厚度之比为3:1的条件下,建立易拉罐用料模型,由微积分方法求最优解,结论:易拉罐高与直径之比2:1,用料最省; 在假定易拉罐高与直径2:1的条件下,将易拉罐材料设想为外体积减内体积,得用料模型:用微积分方法得最优解:易拉罐盖子厚度与其他部分厚度为3:1。问题三,在易拉罐基本尺寸,高与直径之比2:1的条件下,将上面为正圆台的易拉罐用料优化设计,转化为正圆柱部分一定而研究此正圆台的用料优化
2、设计。模型 圆台面积 用数学软件求得最优解r=1.467, h=1.93时,s=45.07最小。结论:易拉罐总高:底直径=2:1,上下底之比=1:2,与实际比较分析了各种原因。问题四,从重视外观美学要求(黄金分割),认为高与直径之比1:0.4更别致、美观。对这种比例的正圆柱体易拉罐作了实际优化分析。另从美学及经济学的角度提出正四面柱体易拉罐的创新设想,分析了这样易拉罐的优缺点和尺寸优化设计。最后写出了我们对数学建模的体会文章。关键词:易拉罐 最优设计 数学建模问题重述在生活中我们会发现销量很大的饮料 (例如饮料量为355毫升的可口可乐、青岛啤酒等) 的饮料罐(即易拉罐)的形状和尺寸几乎都是一样
3、的。看来,这并非偶然,这应该是某种意义下的最优设计。当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。现在就请你们小组来研究易拉罐的形状和尺寸的最优设计问题。具体说,请你们完成以下的任务:1 取一个净含量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量你们认为验证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说明;如果数据不是你们自己测量得到的,那么你们必须注明出处。2 设易拉罐是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸,例如
4、说,半径和高之比,等等。3 设易拉罐的中心纵断面如下图所示,即上面部分是一个正圆台,下面部分是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸。4. 利用你们对所测量的易拉罐的洞察和想象力,做出你们自己的关于易拉罐形状和尺寸的最优设计。一、问题的提出我们只要稍加留意就会发现销量很大的饮料 (例如饮料量为355毫升的可口可乐、青岛啤酒等) 的饮料罐(即易拉罐)的形状和尺寸几乎都是一样的。看来,这并非偶然,这应该是某种意义下的最优设计。当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱
5、就很可观了。对于易拉罐的形状和尺寸的最优设计我们提出了以下问题:1. 取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量你们认为验证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说明;如果数据不是你们自己测量得到的,那么你们必须注明出处。2. 设易拉罐是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。3. 设易拉罐的中心纵断面如图所示,即上面部分是一个正圆台,下面部分是一个正圆柱体,什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸。4. 利用你们对所测量
6、的易拉罐的洞察和想象力,做出你们自己的关于易拉罐形状和尺寸的最优设计。 二、模型假设1、假设易拉罐的各个组成部分是同一种材料;不考虑具体的用料(假设为铝材),也不考虑易拉罐的工艺过程。2、易拉罐的形状和尺寸假设为“正圆柱体”或“正圆台与正圆柱体的结合”等等。3、实际测量允许有一定的误差。4、问题二中的假设: 在本问题的研究中,假设易垃罐是一个正圆柱体; 假设易拉罐侧面和底面的厚度相同,顶部的厚度是侧面厚度的3倍;三模型的假设与求解问题一:上圆台上底直径59盖厚0.30下底直径67上圆台侧面厚0.20高度13正圆柱直径67壁厚0.10高度110我们测得355ml易拉罐(雪碧)尺寸如下(单位mm)
7、:(以后尺寸均以其为基本单位)问题二: 本题建立在易拉罐是一个正圆柱体的基础之上,如图(2)假设易拉罐侧面厚度与底面厚度相同,与顶盖厚度不同。1 符号说明:r:易拉罐的半径;h:易拉罐的高;v:易拉罐内体积(容积);sv:易拉罐所用材料的体积;b:易拉罐除顶盖外的厚度;:顶盖厚度参数,即顶盖厚度。 (2)2 问题分析与模型由于易拉罐尺寸优化设计要研究到易拉罐各部分厚度问题,可设想一个易拉罐所用材料是易拉罐外形体积减去内部体积(见图2)。易拉罐用料=侧面材料+底面材料+顶盖材料将上式化简,并以为参数,看作为自变量。有作简化,因为,则很小,所以可将带的项忽略。有记(v是已知的,即罐容积一定)。得数
8、学模型3 模型求解由约束条件,得,代入目标函数令得因为所以为极小值点。又由于极值点只有此一个,因此也是全局极小。又由于,则由对问题二的前一解的结论,得,结论:。4 结果分析易拉罐顶盖厚度是侧面厚度的3倍(),与我们对355ml可口可乐等易拉罐的实测数据完全一致(见问题(1)的解)。问题三:本题建立在易拉罐上面是一个正圆台,下面是一个正圆柱体的基础之上,如图(3)1 符号说明R:易拉罐正圆柱体半径(也即是正圆台下底半径);r:易拉罐正圆台上底半径;h1:易拉罐正圆柱体高;V1:易拉罐正圆柱体容积;h :易拉罐正圆台高;V:易拉罐正圆台容积。3问题分析与模型 因为上述解问题二的结论(正圆柱体易拉罐
9、用料最省的形状和尺寸的最优设计是h=2D)已确定了圆柱形易拉罐的基本尺寸,若易拉罐体积一定,则基本的高与半径可大致确定,即易拉罐的圆柱体部分确定。所以这里我们可以由此简化问题为研究正圆台部分的优化设计。以常见的可口可乐等355ml易拉罐为例,易拉罐可取定R=32mm,h1=110mm,于是测算出V=355ml.于是问题三转化为,已知易拉罐上部正圆台体积V一定,底半径R一定时,其上底半径r和高h为何值(或r与h比例是多少)正圆台的表面积最小,如图(4): (4)求正圆台的面积得模型:正圆台面积=顶盖面积+圆台侧面积用数学软件求S的最小值(其中如前分析取V=35ml,R=3.2cm),得: 当r=1.467cm,h=1.93cm时,结论:常见的正圆台与正圆柱体结合的易拉罐,只考虑形状和尺寸变化用料最少的优化设计标准是:总高度与底直径之比为2:1, 正圆台的高与上底直径之比约为2:3(即h:2r2:3),相应易拉罐上下底直径之比为。问题四:新设计现今常见的易拉罐都是圆柱形,对于一定容积的柱体,以正圆柱体的表面积最小,且圆柱形的外形也较为美观。但易拉罐流行至今几十年都是圆柱形,也太常见有审美疲劳。因而我们考虑易拉
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度新能源汽车动力系统技术转让合同3篇
- 2024年个人房产买卖合同书3篇
- 2024年度车位号码牌定制合同3篇
- 2024年企业开业盛典合同样本3篇
- 2024二手车买卖定金合同
- 2024年房地产企业项目联合开发合作合同范本版B版
- 2024年定制高档包装盒订购合同版B版
- 2024年减灾纪录片拍摄合作合同2篇
- 2024FYX广告围挡拆除合同月版
- 非医用过滤空气用呼吸器项目质量管理方案
- 北京灵活就业协议书模板
- 班主任技能大赛真题及答案
- 【新教材】人教版(2024)七年级上册英语Start Unit 1 ~Unit 7全册教案
- 2024年内蒙古公共基础知识
- 2024年中考道德与法治时政热点复习:“人工智能”(含练习题及答案)
- 任务二 亲近动物丰富生命体验(名师教案)
- 22G101三维彩色立体图集
- 知道网课智慧树《文化考察(西安工程大学)》章节测试答案
- 酒店装饰装修工程现场安全文明施工方案
- 水平四 足球大单元教案打印版
- DL-T 1476-2023 电力安全工器具预防性试验规程
评论
0/150
提交评论