多元回归(多重共线,异方差,残差检验eviews,spss)_第1页
多元回归(多重共线,异方差,残差检验eviews,spss)_第2页
多元回归(多重共线,异方差,残差检验eviews,spss)_第3页
多元回归(多重共线,异方差,残差检验eviews,spss)_第4页
多元回归(多重共线,异方差,残差检验eviews,spss)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数据处理:4.3 模型建立设年末实有耕地面积,有效灌溉率,农用塑料薄膜使用量,农药使用量,农业机械总动力,农业从业人数,农业投资额分别为;农业产值为。在此我们假设上述七个变量都与农业产值有显著影响,在SPSS中用进入法对其做出预判。表4-3 回归预判表模型非标准化系数标准化系数显著性共线性统计标准误差允差(常数)1.987E-15.018.0001.000年末实有耕地面积.225.291.225.775.464.004239.655有效灌溉率.208.116.2081.797.115.02638.086农用塑料薄膜使用量-.396.489-.396-.810.445.001677.462农药使

2、用量-.426.564-.426-.756.475.001899.494农业机械总动力.831.282.8312.946.022.004225.582农业从业人数.024.179.024.136.895.01190.381农业投资额.197.140.1971.401.204.01855.747 因变量: 农业产值可以从表中得出回归方程:从显著性水平上看,小于0.05的只有一个农业机械动力,显然不能够准确的表达出与农业产值之间的关系。根据表中的值均大于,其中四个大于了100,这说明模型中存在严重的多重共线性。并且在相关系数表中(附表1-2),我们也能够看出各个自变量之间相关系数较大,有较大的相关

3、性。为了保证得到的回归模型能较好的反映真实意义,就要解决多重共线性问题。解决多重共线性我们一般使用逐步回归的方法。4.3.1 逐步回归将标准化后的数据输入EVIEWS,首先找出与因变量拟合度最高自变量,的经过回归拟合可以得出7个变量的拟合优度,按降序排列如下表:表4-4 拟合优度表变量拟合优度0.9843250.9722720.9720240.9069870.9030330.845010.684597拟合优度的大小也能在一定程度上表现出自变量与因变量的影响大小。这里是农业机械总动力,说明农业机械总动力对农业产值有较大的影响。在近年来江苏省整体经济发展迅速,科技水平大大提高,使农业的机械化水平发

4、展迅速,机械设备的使用极大促进了农业产值的提高。由表得,与的拟合优度最高,故作为基本方程。依次按拟合优度降序排列进入模型,检验新进入的变量是否显著并且拟合优度是否提高。拟合优度排第二的是变量,所以将进入基础模型。进入基本方程,结果如下图:图4-1 变量判断图从图的运行结果我们可以看出,的估计量对应的大于,不显著,所以不符合回归模型。是农膜使用量,可以看出其对农业产值的影响不显著。农膜主要使用在经济作物的种植中,近年来有部分农户利用地膜覆盖技术和塑料大棚进行种植、栽培瓜果蔬菜,获得了可观的收益,但是普及率不是很高,是一个对农业产值的影响不是很大。所以我们不选择变量,再将进入基本方程。图4-2 第

5、一步逐步回归图由图可以看出,的估计量对应的值大于,所以没有显著性,所以同样不符合回归模型,故删去变量。为农药使用量,所以农药使用量对农业产值没有显著影响。再将依次进入方程判断最优拟合方程,不显著,显著,也是具有显著性的,表明农业投资额,有效灌溉率对农业产值也有显著影响,但是农业投资额对农业产值的影响大还是有效灌溉率对农业产值的影响大,还需要进一步比较。表4-5 拟合优度表变量系数标准差t值p值拟合优度1常数-1.57E-070.022013-7.11E-061.00000.99377000.765190.05788313.219690.00000.2468760.0578834.265180.

6、00112常数8.13E-100.032932.47E-081.00000.9860580.9999220.08181.2215440.24530.9012980.081811.018320.0000由表可得,但由于模型的拟合优度为0.993770,模型的拟合优度为0.986058,比较他们两个的拟合优度,发现模型的拟合优度较大,故选则作为基本方程。然后按照第一次逐步回归法的步骤依次添加变量,并根据值判断其显著性。可以得出为最终方程,值分别为,,均显著。经过逐步回归依次得到农业机械总动力,农业投资额,有效灌溉率对农业产值的影响较为显著。估计结果如下图:图4-3 逐步回归模型结果图从图中可以得出

7、系数:,所以写出对应的估计方程为:。得出估计方程还要进行各项检验,只有通过检验才能说明我们得到的方程有效,才具有实际意义。4.3.2 F检验检验的原假设和备择假设如下:;不全为零。从图中可以看出检验对应的值小于,所以拒绝,所以我们得出的估计方程存在显著的线性关系。4.3.3 t检验检验的原假设和备择假设为:;。由图可以看出变量分别对应的,均小于,拒绝原假设。同样可以看模型得出的值,通过查找分布表得,用值与进行比较,如果,则拒绝原假设所以回归系数显著。变量对有显著影响。4.3.4 异方差检验由于异方差的存在使得最小二乘估计量不再是最好线性无偏估计量,会导致模型的残差不再是同方差的,所以要对模型进

8、行异方差检验。(1) 图示法此方法是较为原始的一种检验异方差的方法,可以直观的看出残差平方的散点图是否与样本数据或有明显的关系,若随着或的变化而变化,那么就说明存在异方差性。这里我们可以看出残差平方的散点图呈不规则状,散乱分布,所以我们得出的回归模型不存在异方差性。图4-4 异方差散点图(2) 怀特()检验可以看出模型中有三个解释变量,那么模型辅助回归可以写成:其原假设和备择假设分别为: ,; 中至少一个不为零。怀特检验的运行图如下:图4-5 怀特检验图给定显著性水平,对应的大于,(错了要改正)拒绝原假设,故不存在异方差。4.3.5 自相关检验误差存在自相关时,模型中的系数用最小二乘估计计算会不准确,往往会算出的系数的真实方差值和误差项的方差值会偏小。为了检验得到的方程的准确性,我们进行自相关检验。检验的原假设和备择假设分别为:(不存在自相关)(存在一阶自相关)表4-6 DW检验运行结果图从表中得出,值为1.964452,通过查找表可得,当时,,所以值在区间(1.75,2.25)之间。这说明所建立的线性回归模型无自相关现象,不需要修正值检验。4.3.6 残差检验图4-7 残差分析图由于对应的大于,所以拒绝

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论