![初中几何辅助线做法大全_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-2/17/77495b59-d2f1-452c-8828-9fc1876284e5/77495b59-d2f1-452c-8828-9fc1876284e51.gif)
![初中几何辅助线做法大全_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-2/17/77495b59-d2f1-452c-8828-9fc1876284e5/77495b59-d2f1-452c-8828-9fc1876284e52.gif)
![初中几何辅助线做法大全_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-2/17/77495b59-d2f1-452c-8828-9fc1876284e5/77495b59-d2f1-452c-8828-9fc1876284e53.gif)
![初中几何辅助线做法大全_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-2/17/77495b59-d2f1-452c-8828-9fc1876284e5/77495b59-d2f1-452c-8828-9fc1876284e54.gif)
![初中几何辅助线做法大全_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-2/17/77495b59-d2f1-452c-8828-9fc1876284e5/77495b59-d2f1-452c-8828-9fc1876284e55.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、规律1.如果平面上有n(n2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n1)条.规律2.平面上的n条直线最多可把平面分成n(n+1)+1个部分.规律3.如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n1)条.规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半.例:如图,B在线段AC上,M是AB的中点,N是BC的中点.求证:MN =AC证明:M是AB的中点,N是BC的中点AM = BM =AB ,BN = CN =BCMN = MB+BN =AB +BC = (AB + BC)MN =AC练习:1.如图,点C是线段
2、AB上的一点,M是线段BC的中点.求证:AM = (AB + BC) 2.如图,点B在线段AC上,M是AB的中点,N是AC的中点.求证:MN = BC3.如图,点B在线段AC上,N是AC的中点,M是BC的中点.求证:MN =AB 规律5.有公共端点的n条射线所构成的交点的个数一共有n(n1)个.规律6.如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n1)个.规律7. 如果平面内有n条直线都经过同一点,则可构成n(n1)对对顶角.规律8.平面上若有n(n3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n1)(n2)个.规律9.互为邻补角的两个角平分线所成的角
3、的度数为90o.规律10.平面上有n条直线相交,最多交点的个数为n(n1)个.规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半.规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直.例:如图,以下三种情况请同学们自己证明.规律13.已知ABDE,如图,规律如下:规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半.例:已知,BE、DE分别平分ABC和ADC,若A =45o,C =55o,求E的度数.解:AABE=EADECCDE=ECBE得AABECCDE =EADEECBEBE平分ABC、DE
4、平分ADC,ABE=CBE,CDE=ADE2E=ACE = (AC)A =45o,C =55o,E =50o三角形部分规律15在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.例:如图,已知D、E为ABC内两点,求证:ABACBDDECE. 证法(一):将DE向两边延长,分别交AB、AC于M、N在AMN中, AMANMDDENE在BDM中,MBMDBD在CEN中,CNNECE得AMANMBMDCNNEMDDENEBDCEABACBDDECE证法(二)延长BD交AC于F,延长CE交
5、BF于G,在ABF和GFC和GDE中有,ABAFBDDGGFGFFCGECEDGGEDE有ABAFGFFCDGGEBDDGGFGECEDEABACBDDECE注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题.练习:已知:如图P为ABC内任一点,求证:(ABBCAC)PAPBPCABBCAC规律16三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内角的一半.例:如图,已知BD为ABC的角平分线,CD为ABC 的外角ACE的平分线,它与BD的延长线交于D.求证:A = 2D证明:BD、CD分别是ABC、AC
6、E的平分线ACE =21, ABC =22A = ACE ABCA = 2122又D =12A =2D规律17. 三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半.例:如图,BD、CD分别平分ABC、ACB,求证:BDC = 90oA证明:BD、CD分别平分ABC、ACBA2122 = 180o2(12)= 180oABDC = 180o(12)(12) = 180oBDC把式代入式得 2(180oBDC)= 180oA即:360o2BDC =180oA2BDC = 180oABDC = 90oA规律18. 三角形的两个外角平分线相交所成的锐角等于90o减去第三个内角的一半.
7、例:如图,BD、CD分别平分EBC、FCB,求证:BDC = 90oA证明:BD、CD分别平分EBC、FCBEBC = 21、FCB = 2221 =AACB 22 =AABC 得2(12)= AABCACBA2(12)= 180oA(12)= 90oABDC = 180o(12)BDC = 180o(90oA)BDC = 90oA规律19. 从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差(的绝对值)的一半.例:已知,如图,在ABC中,CB,ADBC于D,AE平分BAC.求证:EAD = (CB)证明:AE平分BACBAE =CAE =BACBAC =180o(BC)E
8、AC = 180o(BC)ADBCDAC = 90oCEAD = EACDACEAD = 180o(BC)(90oC) = 90o(BC)90oC = (CB)如果把AD平移可以得到如下两图,FDBC其它条件不变,结论为EFD = (CB).注意:同学们在学习几何时,可以把自己证完的题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三、灵活应变的能力.规律20.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D为ABC内任一点,
9、求证:BDCBAC证法(一):延长BD交AC于E,BDC是EDC的外角,BDCDEC同理:DECBACBDCBAC证法(二):连结AD,并延长交BC于FBDF是ABD的外角,BDFBAD同理CDFCADBDFCDFBADCAD即:BDCBAC规律21.有角平分线时常在角两边截取相等的线段,构造全等三角形.例:已知,如图,AD为ABC的中线且1 = 2,3 = 4,求证:BECFEF证明:在DA上截取DN = DB,连结NE、NF,则DN = DC在BDE和NDE中,DN = DB1 = 2ED = EDBDENDEBE = NE同理可证:CF = NF在EFN中,ENFNEFBECFEF规律2
10、2.有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD为ABC的中线,且1 = 2,3 = 4,求证:BECFEF证明:延长ED到M,使DM = DE,连结CM、FMBDE和CDM中, BD = CD1 = 5ED = MDBDECDMCM = BE又1 = 2,3 = 4123 4 = 180o3 2 = 90o即EDF = 90oFDM = EDF = 90oEDF和MDF中ED = MDFDM = EDFDF = DFEDFMDFEF = MF在CMF中,CFCM MFBECFEF(此题也可加倍FD,证法同上)规律23.在三角形中有中线时,常加倍延长中线构造
11、全等三角形.例:已知,如图,AD为ABC的中线,求证:ABAC2AD证明:延长AD至E,使DE = AD,连结BEAD为ABC的中线BD =CD在ACD和EBD中BD = CD 1 = 2AD = EDACDEBDABE中有ABBEAEABAC2AD规律24.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.当已知或求证中涉及到线段a、b、c、d有下列情况之一时用此种方法:aba±b = ca±b = c±d例:已知,如图,在ABC中,ABAC,1 = 2,P为AD上任一点,求证:A
12、BACPBPC证明:截长法:在AB上截取AN = AC,连结PN在APN和APC中,AN = AC1 = 2AP = APAPNAPCPC = PNBPN中有PBPCBNPBPCABAC补短法:延长AC至M,使AM = AB,连结PM在ABP和AMP中AB = AM 1 = 2AP = APABPAMPPB = PM又在PCM中有CM PMPCABACPBPC练习:1.已知,在ABC中,B = 60o,AD、CE是ABC的角平分线,并且它们交于点O求证:AC = AECD2.已知,如图,ABCD1 = 2 ,3 = 4. 求证:BC = ABCD 规律25.证明两条线段相等的步骤:观察要证线段
13、在哪两个可能全等的三角形中,然后证这两个三角形全等。若图中没有全等三角形,可以把求证线段用和它相等的线段代换,再证它们所在的三角形全等.如果没有相等的线段代换,可设法作辅助线构造全等三角形.例:如图,已知,BE、CD相交于F,B = C,1 = 2,求证:DF = EF证明:ADF =B3 AEF = C4又3 = 4B = CADF = AEF在ADF和AEF中ADF = AEF1 = 2 AF = AFADFAEFDF = EF规律26.在一个图形中,有多个垂直关系时,常用同角(等角)的余角相等来证明两个角相等.例:已知,如图RtABC中,AB = AC,BAC = 90o,过A作任一条直
14、线AN,作BDAN于D,CEAN于E,求证:DE = BDCE证明:BAC = 90o, BDAN12 = 90o13 = 90o2 = 3BDAN CEANBDA =AEC = 90o在ABD和CAE中,BDA =AEC2 = 3AB = ACABDCAEBD = AE且AD = CEAEAD = BDCEDE = BDCE规律27.三角形一边的两端点到这边的中线所在的直线的距离相等.例:AD为ABC的中线,且CFAD于F,BEAD的延长线于E求证:BE = CF证明:(略)规律28.条件不足时延长已知边构造三角形.例:已知AC = BD,ADAC于A,BCBD于B求证:AD = BC证明:
15、分别延长DA、CB交于点EADAC BCBDCAE = DBE = 90o在DBE和CAE中DBE =CAEBD = ACE =EDBECAEED = EC,EB = EAEDEA = EC EBAD = BC规律29.连接四边形的对角线,把四边形问题转化成三角形来解决问题.例:已知,如图,ABCD,ADBC求证:AB = CD证明:连结AC(或BD)ABCD,ADBC1 = 2 在ABC和CDA中,1 = 2 AC = CA3 = 4 ABCCDAAB = CD练习:已知,如图,AB = DC,AD = BC,DE = BF,求证:BE = DF规律30.有和角平分线垂直的线段时,通常把这条
16、线段延长。可归结为“角分垂等腰归”.例:已知,如图,在RtABC中,AB = AC,BAC = 90o,1 = 2 ,CEBD的延长线于E求证:BD = 2CE证明:分别延长BA、CE交于FBECFBEF =BEC = 90o在BEF和BEC中1 = 2 BE = BEBEF =BECBEFBECCE = FE =CFBAC = 90o , BECFBAC = CAF = 90o1BDA = 90o1BFC = 90oBDA = BFC在ABD和ACF中BAC = CAFBDA = BFCAB = ACABDACFBD = CFBD = 2CE练习:已知,如图,ACB = 3B,1 =2,CD
17、AD于D,求证:ABAC = 2CD规律31.当证题有困难时,可结合已知条件,把图形中的某两点连接起来构造全等三角形.例:已知,如图,AC、BD相交于O,且AB = DC,AC = BD,求证:A = D证明:(连结BC,过程略)规律32.当证题缺少线段相等的条件时,可取某条线段中点,为证题提供条件.例:已知,如图,AB = DC,A = D求证:ABC = DCB证明:分别取AD、BC中点N、M,连结NB、NM、NC(过程略)规律33.有角平分线时,常过角平分线上的点向角两边做垂线,利用角平分线上的点到角两边距离相等证题.例:已知,如图,1 = 2 ,P为BN上一点,且PDBC于D,ABBC
18、 = 2BD,求证:BAPBCP = 180o证明:过P作PEBA于EPDBC,1 = 2 PE = PD在RtBPE和RtBPD中BP = BPPE = PDRtBPERtBPDBE = BDABBC = 2BD,BC = CDBD,AB = BEAEAE =CDPEBE,PDBCPEB =PDC = 90o在PEA和PDC中PE = PDPEB =PDCAE =CDPEAPDCPCB = EAPBAPEAP = 180oBAPBCP = 180o练习:1.已知,如图,PA、PC分别是ABC外角MAC与NCA的平分线,它们交于P,PDBM于M,PFBN于F,求证:BP为MBN的平分线2. 已
19、知,如图,在ABC中,ABC =100o,ACB = 20o,CE是ACB的平分线,D是AC上一点,若CBD = 20o,求CED的度数。规律34.有等腰三角形时常用的辅助线作顶角的平分线,底边中线,底边高线例:已知,如图,AB =AC,BDAC于D,求证:BAC = 2DBC证明:(方法一)作BAC的平分线AE,交BC于E,则1 = 2 = BAC又AB =ACAEBC2ACB = 90oBDACDBCACB = 90o2 = DBCBAC = 2DBC(方法二)过A作AEBC于E(过程略)(方法三)取BC中点E,连结AE(过程略)有底边中点时,常作底边中线例:已知,如图,ABC中,AB =
20、AC,D为BC中点,DEAB于E,DFAC于F,求证:DE = DF证明:连结AD.D为BC中点,BD = CD又AB =ACAD平分BACDEAB,DFACDE = DF将腰延长一倍,构造直角三角形解题例:已知,如图,ABC中,AB =AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EFBC证明:延长BE到N,使AN = AB,连结CN,则AB = AN = ACB = ACB, ACN = ANCBACBACNANC = 180o2BCA2ACN = 180oBCAACN = 90o即BCN = 90oNCBCAE = AFAEF = AFE又BAC = AEF AFEB
21、AC = ACN ANCBAC =2AEF = 2ANCAEF = ANCEFNCEFBC常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F求证:DF = EF证明:(证法一)过D作DNAE,交BC于N,则DNB = ACB,NDE = E,AB = AC,B = ACBB =DNBBD = DN又BD = CE DN = EC在DNF和ECF中1 = 2NDF =EDN = ECDNFECFDF = EF(证法二)过E作EMAB交BC延长线于M,则EMB =B(过程略)常过一腰上的某一已知点做底
22、的平行线例:已知,如图,ABC中,AB =AC,E在AC上,D在BA延长线上,且AD = AE,连结DE求证:DEBC证明:(证法一)过点E作EFBC交AB于F,则AFE =BAEF =CAB = ACB =CAFE =AEFAD = AEAED =ADE又AFEAEFAEDADE = 180o2AEF2AED = 90o即FED = 90oDEFE又EFBCDEBC(证法二)过点D作DNBC交CA的延长线于N,(过程略)(证法三)过点A作AMBC交DE于M,(过程略)常将等腰三角形转化成特殊的等腰三角形-等边三角形例:已知,如图,ABC中,AB =AC,BAC = 80o ,P为形内一点,若
23、PBC = 10oPCB = 30o求PAB的度数.解法一:以AB为一边作等边三角形,连结CE则BAE =ABE = 60oAE = AB = BEAB = ACAE = AC ABC =ACBAEC =ACEEAC =BACBAE = 80o60o = 20oACE = (180oEAC)= 80oACB= (180oBAC)= 50oBCE =ACEACB = 80o50o = 30oPCB = 30oPCB = BCEABC =ACB = 50o, ABE = 60oEBC =ABEABC = 60o50o =10oPBC = 10oPBC = EBC在PBC和EBC中PBC = EBC
24、BC = BCPCB = BCEPBCEBCBP =BEAB = BEAB =BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP)= 70o解法二:以AC为一边作等边三角形,证法同一。解法三:以BC为一边作等边三角形BCE,连结AE,则EB = EC = BC,BEC =EBC = 60oEB = ECE在BC的中垂线上同理A在BC的中垂线上EA所在的直线是BC的中垂线EABCAEB = BEC = 30o =PCB由解法一知:ABC = 50oABE = EBCABC = 10o =PBCABE =PBC,BE = BC,AEB =PCBAB
25、EPBCAB = BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP) = (180o40o)= 70o规律35.有二倍角时常用的辅助线构造等腰三角形使二倍角是等腰三角形的顶角的外角例:已知,如图,在ABC中,1 = 2,ABC = 2C,求证:ABBD = AC证明:延长AB到E,使BE = BD,连结DE则BED = BDEABD =EBDEABC =2EABC = 2CE = C 在AED和ACD中E = C1 = 2AD = ADAEDACDAC = AEAE = ABBEAC = ABBE即ABBD = AC平分二倍角例:已知,如图,
26、在ABC中,BDAC于D,BAC = 2DBC求证:ABC = ACB证明:作BAC的平分线AE交BC于E,则BAE = CAE = DBCBDACCBD C = 90oCAEC= 90oAEC= 180oCAEC= 90oAEBCABCBAE = 90oCAEC= 90oBAE = CAEABC = ACB加倍小角例:已知,如图,在ABC中,BDAC于D,BAC = 2DBC求证:ABC = ACB证明:作FBD =DBC,BF交AC于F(过程略)规律36.有垂直平分线时常把垂直平分线上的点与线段两端点连结起来.例:已知,如图,ABC中,AB = AC,BAC = 120o,EF为AB的垂直
27、平分线,EF交BC于F,交AB于E求证:BF =FC证明:连结AF,则AF = BFB =FABAB = ACB =CBAC = 120oB =CBAC =(180oBAC) = 30oFAB = 30oFAC =BACFAB = 120o30o =90o又C =30oAF = FCBF =FC练习:已知,如图,在ABC中,CAB的平分线AD与BC的垂直平分线DE交于点D,DMAB于M,DNAC延长线于N求证:BM = CN规律37.有垂直时常构造垂直平分线.例:已知,如图,在ABC中,B =2C,ADBC于D求证:CD = ABBD证明:(一)在CD上截取DE = DB,连结AE,则AB =
28、 AEB =AEBB =2CAEB =2C又AEB = CEACC =EACAE = CE又CD =DECECD = BDAB(二)延长CB到F,使DF = DC,连结AF则AF =AC(过程略)规律38.有中点时常构造垂直平分线.例:已知,如图,在ABC中,BC = 2AB, ABC =2C,BD = CD求证:ABC为直角三角形证明:过D作DEBC,交AC于E,连结BE,则BE = CE,C =EBCABC =2CABE =EBCBC = 2AB,BD = CDBD = AB在ABE和DBE中AB = BDABE =EBCBE = BEABEDBEBAE = BDEBDE = 90oBAE
29、 = 90o即ABC为直角三角形规律39.当涉及到线段平方的关系式时常构造直角三角形,利用勾股定理证题.例:已知,如图,在ABC中,A = 90o,DE为BC的垂直平分线求证:BE2AE2 = AC2证明:连结CE,则BE = CEA = 90oAE2AC2 = EC2AE2AC2= BE2BE2AE2 = AC2练习:已知,如图,在ABC中,BAC =90o,AB = AC,P为BC上一点求证:PB2PC2= 2PA2规律40.条件中出现特殊角时常作高把特殊角放在直角三角形中.例:已知,如图,在ABC中,B = 45o,C = 30o,AB =,求AC的长. 解:过A作ADBC于DBBAD
30、= 90o,B =45o,B = BAD = 45o,AD = BDAB2 = AD2BD2,AB =AD = 1C = 30o,ADBCAC = 2AD = 2四边形部分规律41.平行四边形的两邻边之和等于平行四边形周长的一半.例:已知,ABCD的周长为60cm,对角线AC、BD相交于点O,AOB的周长比BOC的周长多8cm,求这个四边形各边长.解:四边形ABCD为平行四边形AB = CD,AD = CB,AO = COABCDDACB = 60AOABOB(OBBCOC) = 8ABBC = 30,ABBC =8AB = CD =19,BC = AD = 11答:这个四边形各边长分别为19
31、cm、11cm、19cm、11cm.规律42.平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.(例题如上)规律43.有平行线时常作平行线构造平行四边形例:已知,如图,RtABC,ACB =90o,CDAB于D,AE平分CAB交CD于F,过F作FHAB交BC于H求证:CE = BH证明:过F作FPBC交AB于P,则四边形FPBH为平行四边形B =FPA,BH = FPACB = 90o,CDAB5CAB = 45o,BCAB = 90o5 =B5 =FPA又1 =2,AF = AFCAFPAFCF = FP4 =15,3 =2B3 =4CF = CECE = BH练习:已
32、知,如图,ABEFGH,BE = GC求证:AB = EFGH规律44.有以平行四边形一边中点为端点的线段时常延长此线段.例:已知,如图,在ABCD中,AB = 2BC,M为AB中点求证:CMDM证明:延长DM、CB交于N四边形ABCD为平行四边形AD =BC,ADBCA = NBA ADN =N又AM = BMAMDBMNAD = BNBN = BCAB = 2BC,AM = BMBM = BC = BN1 =2,3 =N123N = 180o,13 = 90oCMDM规律45.平行四边形对角线的交点到一组对边距离相等.如图:OE = OF规律46.平行四边形一边(或这边所在的直线)上的任意
33、一点与对边的两个端点的连线所构成的三角形的面积等于平行四边形面积的一半.如图:SBEC =SABCD规律47.平行四边形内任意一点与四个顶点的连线所构成的四个三角形中,不相邻的两个三角形的面积之和等于平行四边形面积的一半.如图:SAOB SDOC = SBOCSAOD = SABCD规律48.任意一点与同一平面内的矩形各点的连线中,不相邻的两条线段的平方和相等.如图:AO2OC2 = BO2 DO2规律49.平行四边形四个内角平分线所围成的四边形为矩形.如图:四边形GHMN是矩形(规律45规律49请同学们自己证明)规律50.有垂直时可作垂线构造矩形或平行线.例:已知,如图,E为矩形ABCD的边
34、AD上一点,且BE = ED,P为对角线BD上一点,PFBE于F,PGAD于G求证:PFPG = AB证明:证法一:过P作PHAB于H,则四边形AHPG为矩形AH = GP PHADADB =HPBBE = DEEBD = ADBHPB =EBD又PFB =BHP = 90oPFBBHPHB = FPAHHB = PGPF即AB = PGPF证法二:延长GP交BC于N,则四边形ABNG为矩形,(证明略)规律51.直角三角形常用辅助线方法:作斜边上的高例:已知,如图,若从矩形ABCD的顶点C作对角线BD的垂线与BAD的平分线交于点E求证:AC = CE证明:过A作AFBD,垂足为F,则AFEGF
35、AE = AEG四边形ABCD为矩形BAD = 90oOA = ODBDA =CADAFBDABDADB = ABDBAF = 90oBAF =ADB =CADAE为BAD的平分线BAE =DAEBAEBAF =DAEDAC即FAE =CAECAE =AEGAC = EC作斜边中线,当有下列情况时常作斜边中线:有斜边中点时例:已知,如图,AD、BE是ABC的高, F是DE的中点,G是AB的中点求证:GFDE证明:连结GE、GDAD、BE是ABC的高,G是AB的中点GE = AB,GD = ABGE =GDF是DE的中点GFDE有和斜边倍分关系的线段时例:已知,如图,在ABC中,D是BC延长线上
36、一点,且DABA于A,AC = BD求证:ACB =2B证明:取BD中点E,连结AE,则AE = BE = BD1 =BAC = BDAC = AEACB =2 2 =1B2 =2BACB =2B规律52.正方形一条对角线上一点到另一条对角线上的两端距离相等.例:已知,如图,过正方形ABCD对角线BD上一点P,作PEBC于E,作PFCD于F求证:AP = EF证明:连结AC 、PC四边形ABCD为正方形BD垂直平分AC,BCD = 90oAP = CPPEBC,PFCD,BCD = 90o四边形PECF为矩形PC = EFAP = EF规律53.有正方形一边中点时常取另一边中点.例:已知,如图
37、,正方形ABCD中,M为AB的中点,MNMD,BN平分CBE并交MN于N求证:MD = MN证明:取AD的中点P,连结PM,则DP = PA =AD四边形ABCD为正方形AD = AB, A =ABC= 90o1AMD = 90o,又DMMN2AMD = 90o1 =2M为AB中点AM = MB =ABDP = MB AP = AMAPM =AMP = 45oDPM =135oBN平分CBECBN= 45oMBN =MBCCBN = 90o45o= 135o即DPM =MBNDPMMBNDM = MN注意:把M改为AB上任一点,其它条件不变,结论仍然成立。练习:已知,Q为正方形ABCD的CD边
38、的中点,P为CQ上一点,且AP = PCBC求证:BAP = 2QAD规律54.利用正方形进行旋转变换旋转变换就是当图形具有邻边相等这一特征时,可以把图形的某部分绕相等邻边的公共端点旋转到另一位置的引辅助线方法.旋转变换主要用途是把分散元素通过旋转集中起来,从而为证题创造必要的条件.旋转变换经常用于等腰三角形、等边三角形及正方形中.例:已知,如图,在ABC中,AB = AC,BAC = 90o,D为BC边上任一点求证:2AD2 = BD2CD2证明:把ABD绕点A逆时针旋转90o得ACEBD = CE B = ACEBAC = 90oDAE= 90oDE2 = AD2AE2 = 2AD2BAC
39、B = 90oDCE = 90oCD2CE2 = DE22AD2 = BD2CD2注意:把ADC绕点A顺时针旋转90o也可,方法同上。练习:已知,如图,在正方形ABCD中,E为AD上一点,BF平分CBE交CD于F求证:BE = CFAE规律55.有以正方形一边中点为端点的线段时,常把这条线段延长,构造全等三角形.例:如图,在正方形ABCD中,E、F分别是CD、DA的中点,BE与CF交于P点求证:AP = AB证明:延长CF交BA的延长线于K四边形ABCD为正方形BC = AB = CD = DA BCD =D =BAD = 90oE、F分别是CD、DA的中点CE = CD DF = AF =
40、ADCE = DFBCECDFCBE =DCFBCFDCF = 90oBCFCBE = 90oBECF又D =DAK = 90o DF = AF 1 =2CDFKAFCD = KABA = KA又BECFAP = AB练习:如图,在正方形ABCD中,Q在CD上,且DQ = QC,P在BC上,且AP = CDCP求证:AQ平分DAP规律56.从梯形的一个顶点作一腰的平行线,把梯形分成一个平行四边形和一个三角形.例:已知,如图,等腰梯形ABCD中,ADBC,AD = 3,AB = 4,BC = 7求B的度数解:过A作AECD交BC于E,则四边形AECD为平行四边形AD = EC, CD = AEA
41、B = CD = 4, AD = 3, BC = 7 BE = AE = AB = 4ABE为等边三角形B = 60o规律57.从梯形同一底的两端作另一底所在直线的垂线,把梯形转化成一个矩形和两个三角形.例:已知,如图,在梯形ABCD中,ADBC,AB = AC,BAC = 90o,BD = BC,BD交AC于O求证:CO = CD证明:过A、D分别作AEBC,DFBC,垂足分别为E、F则四边形AEFD为矩形AE = DFAB = AC,AEBC,BAC = 90o,AE = BE = CE =BC,ACB = 45oBC = BDAE = DF = BD又DFBCDBC = 30oBD =
42、BCBDC =BCD =(180oDBC)= 75oDOC =DBCACB = 30o45o = 75oBDC =DOCCO = CD规律58.从梯形的一个顶点作一条对角线的平行线,把梯形转化成平行四边形和三角形.例:已知,如图,等腰梯形ABCD中,ADBC,ACBD,ADBC = 10,DEBC于E求DE的长.解:过D作DFAC,交BC的延长线于F,则四边形ACFD为平行四边形AC = DF, AD = CF四边形ABCD为等腰梯形AC = DBBD = FDDEBC BE = EF =BF=(BCCF) =(BCAD)=×10 = 5ACDF,BDACBDDFBE = FEDE
43、= BE =EF = BF = 5答:DE的长为5.规律59.延长梯形两腰使它们交于一点,把梯形转化成三角形.例:已知,如图,在四边形ABCD中,有AB = DC,B =C,ADBC求证:四边形ABCD等腰梯形证明:延长BA、CD,它们交于点EB =CEB = EC又AB = DCAE =DE EAD =EDAEEADEDA = 180oBCE = 180oEAD =BADBCADBC,B =C四边形ABCD等腰梯形(此题还可以过一顶点作AB或CD的平行线;也可以过A、D作BC的垂线)规律60.有梯形一腰中点时,常过此中点作另一腰的平行线,把梯形转化成平行四边形.例:已知,如图,梯形ABCD中
44、,ADBC,E为CD中点,EFAB于F求证:S梯形ABCD = EF·AB证明:过E作MNAB,交AD的延长线于M,交BC于N,则四边形ABNM为平行四边形EFABSABNM = AB·EFADBCM =MNC又DE = CE1 =2CENDEMSCEN = SDEMS梯形ABCD = S五边形ABNEDSCEN = S五边形ABNEDSDEM = S梯形ABCD = EF·AB规律61.有梯形一腰中点时,也常把一底的端点与中点连结并延长与另一底的延长线相交,把梯形转换成三角形.例:已知,如图,直角梯形ABCD中,ADBC,ABAD于A,DE = EC = BC求
45、证:AEC = 3DAE证明:连结BE并延长交AD的延长线于NADBC3 =N又1 =2 ED = ECDENCEBBE = EN DN = BCABADAE = EN = BEN =DAEAEB =NDAE = 2DAEDE = BC BC = DNDE = DNN =11 =2 N =DAE2 =DAEAEB2 = 2DAEDAE即AEC = 3DAE规律62.梯形有底的中点时,常过中点做两腰的平行线.例:已知,如图,梯形ABCD中,ADBC,ADBC,E、F分别是AD、BC的中点,且EFBC求证:B =C证明:过E作EMAB, ENCD,交BC于M、N,则得ABME,NCDEAE = B
46、M,AB= EM,DE = CN,CD = NEAE = DEBM = CN又BF = CFFM = FN又EFBCEM = EN1 =2ABEM, CDEN1 =B 2 =CB = C规律63.任意四边形的对角线互相垂直时,它们的面积都等于对角线乘积的一半.例:已知,如图,梯形ABCD中,ADBC,AC与BD交于O,且ACBD,AC = 4,BD = 3.4,求梯形ABCD的面积.解:ACBDSABD =AO·BDSBCD = CO·BDS梯形ABCD = SABDSBCD=AO·BDCO·BD =(AOCO)·BD即S梯形ABCD = AC
47、·BD = 答:梯形ABCD面积为6.8.规律64.有线段中点时,常过中点作平行线,利用平行线等分线段定理的推论证题.例:已知:ABC中,D为AB中点,E为BC的三等分点,(BECE)AE、CD交于点F求证:F为CD的中点证明:过D作DNAE交BC于ND为AB中点BN = EN又E为BC的三等分点BN = EN = CEDNAEF为CD的中点规律65.有下列情况时常作三角形中位线.有一边中点;有线段倍分关系;有两边(或两边以上)中点.例:如图,AE为正方形ABCD中BAC的平分线,AE分别交BD、BC于F、E,AC、BD相交于O求证:OF =CE证明:取AE的中点N,连结ON,则ON为ACE的中位线ONCE,ON =CE6 =ONE四边形ABCD为正方形3 =4 = 45o5 =31, 6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《迟滞电压比较器》课件
- 《财务管理作业》课件2
- 《项目的沟通管理》课件
- 《切割线定理》课件
- 家族文化对宋代蜀籍遗民诗人的塑造作用
- 申请报建申请书
- 公益性岗位申请书
- 大学生创新创业项目模板大全
- 小学三年级数学五千以内加减混合两步运算单元测试模拟题
- 100以内整数除法计算质量考核练习题带答案
- 2025年第六届全国国家版图知识竞赛测试题库及答案
- 2025年三方买卖协议标准版本(2篇)
- 【历史】唐朝建立与“贞观之治”课件-2024~2025学年统编版七年级历史下册
- 2025年度文化演艺代理合作协议书4篇
- 【数学】2024-2025学年北师大版数学七年级下册第四章三角形单元测试卷
- 输变电工程监督检查标准化清单-质监站检查
- 2024-2025学年北京海淀区高二(上)期末生物试卷(含答案)
- 中国银行招聘笔试冲刺题2025
- 《小脑梗死护理查房》课件
- 江西专业红娘培训课件
- 领导学 课件全套 孙健 第1-9章 领导要素- 领导力开发
评论
0/150
提交评论