![高中数学-第1课时排列与组合精品课件同步导学说课材料_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-2/17/9529af6a-718e-4480-ac8d-d4474d8ff1ba/9529af6a-718e-4480-ac8d-d4474d8ff1ba1.gif)
![高中数学-第1课时排列与组合精品课件同步导学说课材料_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-2/17/9529af6a-718e-4480-ac8d-d4474d8ff1ba/9529af6a-718e-4480-ac8d-d4474d8ff1ba2.gif)
![高中数学-第1课时排列与组合精品课件同步导学说课材料_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-2/17/9529af6a-718e-4480-ac8d-d4474d8ff1ba/9529af6a-718e-4480-ac8d-d4474d8ff1ba3.gif)
![高中数学-第1课时排列与组合精品课件同步导学说课材料_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-2/17/9529af6a-718e-4480-ac8d-d4474d8ff1ba/9529af6a-718e-4480-ac8d-d4474d8ff1ba4.gif)
![高中数学-第1课时排列与组合精品课件同步导学说课材料_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-2/17/9529af6a-718e-4480-ac8d-d4474d8ff1ba/9529af6a-718e-4480-ac8d-d4474d8ff1ba5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学-第1课时排列与组合精品课件同步导学1排列概念的理解排列概念的理解(难点难点)2排列的简单应用排列的简单应用(重点重点)3排列与排列个数的区别排列与排列个数的区别(易混点易混点) 2009年年10月底,温家宝总理来到山东费县第一中学视察,月底,温家宝总理来到山东费县第一中学视察,听完一节课后与老师们座谈有听完一节课后与老师们座谈有12位教师参加,面对总理坐位教师参加,面对总理坐成一排成一排问:这问:这12位教师的坐法共有多少种?位教师的坐法共有多少种?排列的相关概念及理解排列的相关概念及理解定定义义从从n个不同元素中取出个不同元素中取出m(mn)个元素,个元素, ,叫做从,叫做从n个不
2、同元素中取出个不同元素中取出m个元素的一个排列个元素的一个排列相相同同排排列列若两个排列相同,则两个排列的元素若两个排列相同,则两个排列的元素 ,且元素的,且元素的 也相同也相同定定义义的的理理解解定义的两个重要元素:一是定义的两个重要元素:一是“取出元素取出元素”,二是,二是“将元素按一将元素按一定顺序排列定顺序排列”排列不仅与选取的元素有关且与元素的排列顺序有关排列不仅与选取的元素有关且与元素的排列顺序有关在定义中规定在定义中规定mn,如果,如果mn,一般称为选排列,如果,一般称为选排列,如果mn,则称为全排列,则称为全排列.并按一定顺序排成一列相同排列顺序1下列问题属于排列问题的是下列问
3、题属于排列问题的是()从从10个人中选个人中选2人分别去种树和扫地;人分别去种树和扫地;从从10个人中选个人中选2人去扫地;人去扫地;从班上从班上30名男生中选出名男生中选出5人组成一个篮球队;人组成一个篮球队;从数字从数字5,6,7,8中任取两个不同的数作幂运算中任取两个不同的数作幂运算ABC D解析:解析:由排列的定义知,由排列的定义知,为排列问题为排列问题答案:答案:A2从从4,5,6三个数字中任取两个数字,组成两位数,组成不三个数字中任取两个数字,组成两位数,组成不同的两位数共有同的两位数共有()A4个个 B5个个C6个个 D8个个解析:解析:从从3个数字中选取个数字中选取2个数字组成
4、两位数,共有个数字组成两位数,共有A32326个两位数个两位数答案:答案:C3有有5名男生和名男生和2名女生,从中选出名女生,从中选出5人分别担任语文、数人分别担任语文、数字、英语、物理、化学学科的课代表,则不同的选法共有字、英语、物理、化学学科的课代表,则不同的选法共有_种种(用数字作答用数字作答)解析:解析:由题意知,从由题意知,从7人中选出人中选出5人担任人担任5个学科课代表,个学科课代表,共有共有A752 520种不同的选法种不同的选法答案:答案:2 5204写出从写出从4个元素个元素a,b,c,d中任取中任取3个元素的所有排列个元素的所有排列解析:解析:由题意作树形图,如图由题意作树
5、形图,如图故所有的排列为:故所有的排列为:abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb,共有,共有24个个. 下列问题是排列问题吗?请说明理由下列问题是排列问题吗?请说明理由(1)从从1、2、3、4四个数字中,任选两个做减法,其结果有四个数字中,任选两个做减法,其结果有多少种不同的可能?多少种不同的可能?(2)从从1、2、3、4四个数字中,任选两个做乘法,其结果有四个数字中,任选两个做乘法,其结果有多少种不同的可能?多少种不同的可能?(3)有有12个
6、车站,共需准备多少种车票?个车站,共需准备多少种车票?(4)从学号从学号1到到10的十名同学中任抽两名同学去学校开座谈的十名同学中任抽两名同学去学校开座谈会,有多少种选法?会,有多少种选法?(5)平面上有平面上有5个点,其中任意三点不共线,这个点,其中任意三点不共线,这5点最多可点最多可确定多少条直线?确定多少条直线?解题过程解题过程两点确定一条直线,与两点顺序无关,故两点确定一条直线,与两点顺序无关,故(5)不是排列不是排列(5)所选取两名同学参加座谈会,无顺序之分,故所选取两名同学参加座谈会,无顺序之分,故(4)不是不是排列排列(4)车票与始点站和终点站有关,由排列定义知车票与始点站和终点
7、站有关,由排列定义知(3)是排列是排列(3)由加法及乘法定义知,结果都与两数相乘的顺序无关,由加法及乘法定义知,结果都与两数相乘的顺序无关,故故(2)不是排列不是排列(2)(1)(3)由减法及除法定义知,结果都与两数相减的顺序有关,由减法及除法定义知,结果都与两数相减的顺序有关,故故(1)是排列是排列(1)结果结果各问题研析各问题研析问题问题题后感悟题后感悟判断一个问题是否为排列问题的依据是是否判断一个问题是否为排列问题的依据是是否有顺序,有顺序且是从有顺序,有顺序且是从n个不同的元素中任取个不同的元素中任取m(mn)个不同个不同的元素的问题就是排列,否则就不是排列,而检验它是否有的元素的问题
8、就是排列,否则就不是排列,而检验它是否有顺序的依据就是变换元素的位置,看其结果是否有变化,有顺序的依据就是变换元素的位置,看其结果是否有变化,有变化就是有顺序,无变化就是无顺序变化就是有顺序,无变化就是无顺序 1.判断下列问题是否是排列问题:判断下列问题是否是排列问题:(1)从从1,2,3,4四个数字中,任选两个做加法,有多少种不同四个数字中,任选两个做加法,有多少种不同的结果?的结果?(2)从从1,2,3,4四个数字中,任选两个做除法,有多少种不同四个数字中,任选两个做除法,有多少种不同的结果?的结果?(3)某班共有某班共有50名同学,现要投票选举正、副班长各一人,名同学,现要投票选举正、副
9、班长各一人,共有多少种可能的选举结果?共有多少种可能的选举结果?(4)从从2,3,5,7,9中任取两数分别作对数的底数和真数,有多中任取两数分别作对数的底数和真数,有多少不同对数值?少不同对数值?(5)从从1到到10十个自然数中任取两个数组成点的坐标,可得十个自然数中任取两个数组成点的坐标,可得多少个不同的点的坐标?多少个不同的点的坐标?解析:解析:(1)由于加法运算满足交换律,所以选出的两个元由于加法运算满足交换律,所以选出的两个元素做加法时,与两元素的位置无关故加法不是排列问题素做加法时,与两元素的位置无关故加法不是排列问题(2)做除法时,两元素谁做除数,谁做被除数不一样,此时做除法时,两
10、元素谁做除数,谁做被除数不一样,此时与位置有关,故做除法是排列问题,与位置有关,故做除法是排列问题,(3)是排列问题选出的是排列问题选出的2人,担任正、副班长任意,与顺人,担任正、副班长任意,与顺序有关,所以该问题是排列问题序有关,所以该问题是排列问题(4)是排列问题显然对数值与底数和真数的取值的不同有是排列问题显然对数值与底数和真数的取值的不同有关系,与顺序有关关系,与顺序有关(5)是排列问题任取两个数组成点的坐标,横、纵坐标是排列问题任取两个数组成点的坐标,横、纵坐标的顺序不同,即为不同的坐标,与顺序有关的顺序不同,即为不同的坐标,与顺序有关(6)不是排列问题焦点在不是排列问题焦点在x轴上
11、的椭圆,方程中的轴上的椭圆,方程中的a、b必必有有ab,a、b的大小一定的大小一定 将玫瑰花、月季花、莲花各一束分别送给甲、乙、将玫瑰花、月季花、莲花各一束分别送给甲、乙、丙三人,每人一束,共有多少种不同的分法?请将它们列出丙三人,每人一束,共有多少种不同的分法?请将它们列出来来利用树形图来表示利用树形图来表示解题过程解题过程按分步乘法计数原理的步骤:按分步乘法计数原理的步骤:第一步,分给甲,有第一步,分给甲,有3种分法;种分法;第二步,分给乙,有第二步,分给乙,有2种分法;种分法;第三步,分给丙,有第三步,分给丙,有1种分法种分法故共有故共有3216(种种)不同的分法不同的分法列出树形图:如
12、下列出树形图:如下 甲乙甲乙 丙丙 玫瑰花月季花莲花玫瑰花月季花莲花 玫瑰花玫瑰花 莲花莲花 月季花月季花 月季花月季花 玫瑰花玫瑰花 莲花莲花 月季花月季花 莲花莲花 玫瑰花玫瑰花 莲花莲花 玫瑰花玫瑰花 月季花月季花 莲花莲花 月季花月季花 玫瑰花玫瑰花题后感悟题后感悟“树形图树形图”在解决排列问题个数不多的情况时在解决排列问题个数不多的情况时,是一种比较有效的表示方式在操作中先将元素按一定顺,是一种比较有效的表示方式在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准,进行分类,在序排出,然后以先安排哪个元素为分类标准,进行分类,在每一类中再按余下的元素在前面元素不变的情况下确
13、定第二每一类中再按余下的元素在前面元素不变的情况下确定第二位元素,再按此元素分类,依次进行,直到完成一个排列,位元素,再按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树形图写出排列这样能做到不重不漏,然后再按树形图写出排列 2.北京、上海、香港、台北四个民航站之间的直达航线,北京、上海、香港、台北四个民航站之间的直达航线,需要准备多少种不同的飞机票?将它们列出来需要准备多少种不同的飞机票?将它们列出来解析:解析:先确定起点,有先确定起点,有4种方法,再确定终点,有种方法,再确定终点,有3种方种方法由分步乘法计数原理知,共需要法由分步乘法计数原理知,共需要4312(种种)
14、不同的机票不同的机票列举如下:列举如下: A,B,C,D四名同学重新换位四名同学重新换位(每个同学都不能坐每个同学都不能坐其原来的位子其原来的位子),试列出所有可能的换位方法,试列出所有可能的换位方法(1)本题是一个有限制条件的排列问题;本题是一个有限制条件的排列问题;(2)假设假设A,B,C,D四名同学原位子分别为四名同学原位子分别为1,2,3,4号,则号,则有如下限制条件:有如下限制条件:解答本题可以按位置排法的可能性分类,列树形图解决解答本题可以按位置排法的可能性分类,列树形图解决坐位号坐位号1234不坐不坐ABCD规范解答规范解答假设假设A,B,C,D四名同学原来的位子分别为四名同学原
15、来的位子分别为1,2,3,4号,列出树形图如下:号,列出树形图如下:位置编号位置编号6分分换位后,原来换位后,原来1,2,3,4号座位上坐的同学的所有可能排法有号座位上坐的同学的所有可能排法有:BADC,BCDA,BDAC,CADB,CDAB,CDBA,DABC,DCAB,DCBA.12分分题后感悟题后感悟有限制条件的排列问题应注意限制条件是有限制条件的排列问题应注意限制条件是“位置位置”还是还是“元素元素”,解决这类问题时应注意特殊位置、特殊,解决这类问题时应注意特殊位置、特殊元素优先考虑的原则,做到不重不漏有些非数学化的问题元素优先考虑的原则,做到不重不漏有些非数学化的问题,可以转化为数学
16、问题后再求解,为了形象直观,可借助树,可以转化为数学问题后再求解,为了形象直观,可借助树形图形图. 3.四人四人A、B、C、D坐成一排,其中坐成一排,其中A不坐在排头,写出不坐在排头,写出所有的坐法所有的坐法解析:解析:由由“树形图树形图”可知,所有坐法为可知,所有坐法为BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA.1对排列定义的理解对排列定义的理解(1)定义的两个重要因素定义的两个重要因素一是一是“取出元素取出元素”,二是,二是“将元素按一定顺序排列将元素按一
17、定顺序排列”,这是排,这是排列的两个重要因素,也是与后面将要学习的组合的不同列的两个重要因素,也是与后面将要学习的组合的不同(2)每一个排列不仅与选取的元素有关,而且还与元素的排每一个排列不仅与选取的元素有关,而且还与元素的排列顺序有关选取的元素不同或虽元素相同但元素的排列顺列顺序有关选取的元素不同或虽元素相同但元素的排列顺序不同时都是不同的排列,只有当两个排列的元素完全相同序不同时都是不同的排列,只有当两个排列的元素完全相同且元素的顺序完全一样时才是相同的排列且元素的顺序完全一样时才是相同的排列(3)在定义中规定在定义中规定mn,如果,如果mn,一般称为选排列;如果,一般称为选排列;如果mn
18、,则称为全排列,则称为全排列2如何判断一个具体问题是否为排列问题如何判断一个具体问题是否为排列问题(1)首先要保证元素的无重复性,即是从首先要保证元素的无重复性,即是从n个不同元素中取个不同元素中取出出m(mn)个不同的元素,否则不是排列问题个不同的元素,否则不是排列问题(2)其次要保证元素的有序性,即安排这其次要保证元素的有序性,即安排这m个元素时是有顺个元素时是有顺序的,有序的就是排列,无序的不是排列而检验它是否有序的,有序的就是排列,无序的不是排列而检验它是否有顺序的依据是变换元素的位置,看结果是否发生变化,有变顺序的依据是变换元素的位置,看结果是否发生变化,有变化就是有顺序,无变化就是无顺序化就是有顺序,无变化就是无顺序特别提醒特别提醒排列的本质特征是每一个排列不仅与所选取排列的本质特征是每一个排列不仅与所选取的元素有关,而且与这些元素的排列顺序也有关的元素有关,而且与这些元素的排列顺序也有关从从1,2,3,4,7,9这六个数中任取两个数分别作为一个对数的这六个数中任取两个数分别作为一个对数的底数与真数,可组成多少个不同的对数值?底数与真数,可组成多少个不同的对数值?【错解】【错解】符合条件的对数值可分为两类:符合条件的对数值可分为两类:第第1类,若类,若1为真数,而为真数,而2,3,4,7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋买卖合同协议书范本下载
- 直播劳务的合同
- 图书销售合同
- 商铺转让租赁合同范本
- 提高团队协作能力的技能培训课程
- 鱼种产品购销合同书样本年
- 2025合同模板修缮修理合同范本
- 隧洞施工合同范本
- 装修房屋托管合同范本
- 购房协议合同
- 五年级数学(小数乘除法)计算题专项练习及答案汇编
- 2024年苏州农业职业技术学院高职单招语文历年参考题库含答案解析
- 人美版初中美术知识点汇总九年级全册
- 2022中和北美腰椎间盘突出症诊疗指南的对比(全文)
- 深度学习视角下幼儿科学探究活动设计
- 乳房整形知情同意书
- 全国核技术利用辐射安全申报系统填报指南
- GB/T 18344-2016汽车维护、检测、诊断技术规范
- 青岛版科学(2017)六三制六年级下册第2单元《生物与环境》全单元课件
- 2022-2023年人教版九年级物理上册期末考试(真题)
- 关汉卿的生平与创作
评论
0/150
提交评论