2022版高中数学第三章概率专题突破四课件新人教A版必修3_第1页
2022版高中数学第三章概率专题突破四课件新人教A版必修3_第2页
2022版高中数学第三章概率专题突破四课件新人教A版必修3_第3页
2022版高中数学第三章概率专题突破四课件新人教A版必修3_第4页
2022版高中数学第三章概率专题突破四课件新人教A版必修3_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题突破四用两种概型计算时的几个关注点第三章概率一、关注根本领件的有限性和等可能性思维切入将根本领件列出来,分析是否有限和等可能.例1袋中有大小一样的3个白球,2个红球,2个黄球,每个球有一个区别于其他球的编号,从中随机摸出一个球.(1)把每个球的编号看作一个根本领件建立的概率模型是不是古典概型?解因为根本领件个数有限,而且每个根本领件发生的可能性一样,所以是古典概型.(2)把球的颜色作为划分根本领件的依据,有多少个根本领件?以这些根本领件建立的概率模型是不是古典概型?解把球的颜色作为划分根本领件的依据,可得到“取得一个白球“取得一个红球“取得一个黄球,共3个根本领件.这些根本领件个数有限,但

2、“取得一个白球的概率与“取得一个红球或“取得一个黄球的概率不相等,即不满足等可能性,故不是古典概型.点评只有同时满足有限性和等可能性这两个条件的试验才是古典概型,两个条件只要有一个不满足就不是古典概型.跟踪训练1一个口袋内装有大小相等的1个白球和已有不同编号的三个黑球,从中任意摸出2个球.(1)共有多少个不同的根本领件,这样的根本领件是否为等可能的?该试验是古典概型吗?解任意摸出两球,共有白球和黑球1,白球和黑球2,白球和黑球3,黑球1和黑球2,黑球1和黑球3,黑求2和黑球36个根本领件.因为4个球的大小一样,所以摸出每个球是等可能的,故6个根本领件都是等可能事件.由古典概型定义知,这个试验是

3、古典概型.(2)摸出的两个球都是黑球记为事件A,问事件A包含几个根本领件?解从4个球中摸出2个黑球包含3个根本领件.故事件A包含3个根本领件.(3)计算事件A的概率.解因为试验中根本领件总数n6,而事件A包含的根本领件数m3.二、关注根本领件的计算,做到不重不漏例2一只口袋内装有5个大小一样的球,白球3个,黑球2个,从中一次摸出2个球.(1)共有多少个根本领件?思维切入将结果一一列举,再计算根本领件数.解方法一(列举法)分别记白球为1,2,3号,黑球为4,5号,那么所有的根本领件如下:1,2,1,3,1,4,1,5,2,3,2,4,2,5,3,4,3,5,4,5,共10个(其中1,2表示摸到1

4、号球和2号球).方法二(列表法)设5个球的编号分别为a,b,c,d,e,其中a,b,c为白球,d,e为黑球.列表如下:abcdeaa,ba,ca,da,ebb,ab,cb,db,ecc,ac,bc,dc,edd,ad,bd,cd,eee,ae,be,ce,d由于每次取2个球,每次所取2个球不一样,而摸到b,a与a,b是一样的事件,故共有10个根本领件.(2)“2个都是白球包含几个根本领件?解方法一(列举法)由(1)中知,“2个都是白球包含1,2,1,3,2,3,共3个根本领件.方法二(列表法)由(1)中知,“2个都是白球包含a,b,b,c,a,c,共3个根本领件.点评计算根本领件的个数时,要做

5、到不重不漏,就需要按一定程序操作,如列举法,列表法,还可以用树状图法求解.跟踪训练2从1,2,3,4,5这5个数字中任取三个不同的数字,求以下事件的概率:(1)A三个数字中不含1和5;解这个试验的所有可能结果为:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种.(2)B三个数字中含1或5.解事件B的所有可能结果为:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5),共9种.三、关注事件

6、间的关系,优化概率计算方法例3有3个完全一样的小球a,b,c,随机放入甲、乙两个盒子中,求两个盒子都不空的概率.思维切入先分析三个小球随机放入甲、乙两个盒子的根本领件,再确定两个盒子都不空的对立事件是至少有一个盒子为空所包含的事件,从而确定该事件的概率.解a,b,c三个小球随机放入甲、乙两个盒子的根本领件为:两个盒子都不空的对立事件是至少有一个盒子为空,所包含事件:甲盒子a,b,c,乙盒子空;甲盒子空,乙盒子a,b,c,共2个,甲盒a,b,ca,baa,cb,cbc空乙盒空cb,cbac,aa,ba,b,c点评在求解较复杂事件的概率时,可将其分解为几个互斥的简单事件的和事件,由公式P(A1A2

7、An)P(A1)P(A2)P(An)求得或采用正难那么反的原那么,转化为其对立事件,再用公式P(A)1P( )求得.跟踪训练3袋中有红、黄、白3种颜色的球各1只,从中任取1只,有放回地抽取3次,求3只颜色不全一样的概率.解记“3只颜色全一样为事件A,那么所求事件为A的对立事件.因为“3只颜色全一样又可分为“3只全是红球(事件B),“3只全是黄球(事件C),“3只全是白球(事件D),且它们彼此互斥,故3只颜色全一样即为事件BCD,由于红、黄、白球的个数一样,根本领件的总数为27,四、关注事件的测度,躲避几何概型易错点例4(1)在RtABC中,A90,ABAC,过点A作一射线交线段BC于点M,求B

8、MAB的概率;解记“过点A作一射线交线段BC于点M,使BMAB为事件,由于是过点A作一射线交线段BC于点M,所以射线在BAC内是等可能出现的,又当ABBM时BAM67.5,思维切入“过点A作一射线等可能地分布在BAC内,测度为角度.(2)在RtABC中,A90,ABAC,在线段BC上取一点M,求BMAB的概率.设“在线段BC上取一点M,使BMAB为事件,思维切入“在线段BC上取一点M,等可能地分布在线段BC上,测度为长度.点评当试验是“过点A作一射线时,用角度作测度;当试验是“在线段BC上取一点时,用线段长度作测度.一般地,试验是什么,可以确定根本领件是什么.根本领件累积起来,就可以确定区域是

9、角度、长度还是面积等.跟踪训练4(1)如图,在单位圆O的某一直径上随机的取一点Q,求过点Q且与该直径垂直的弦长长度不超过1的概率.因为Q点在直径AB上是随机的,设事件A为“弦长长度超过1,(2)设A为单位圆O圆周上一点,在圆周上等可能地任取一点B与A连接,那么弦长超过的概率是_.即为AOB的度数大于90,而小于270.123451.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字不同外其他完全一样.现从中随机取出2个小球,那么取出的小球标注的数字之和为3或6的概率是6达标检测DABIAOJIANCEDABIAOJIANCE解析随机取出2个小球得到的结果有10种,取

10、出的小球标注的数字之和为3或6的结果为1,2,1,5,2,4,共3种,所以P ,应选A.1234562.从集合a,b,c,d,e的所有子集中任取一个,那么这个集合恰是集合a,b,c的子集的概率是解析集合a,b,c,d,e共有2532(个)子集,而集合a,b,c的子集有238(个),1234563.盒子里有25个外形一样的球,其中有10个白球,5个黄球,10个黑球,从盒子中任意取出一球,它不是白球,那么它是黑球的概率为解析试验发生包含的事件是从盒子中取出一个不是白球的小球,共有51015(种)结果,满足条件的事件是取出的球是一个黑球,共有10种结果,1234564.在1,2,3,4四个数中随机地

11、抽取一个数记为a,再在剩余的三个数中随机地抽取一个数记为b,那么“不是整数的概率为_.解析在1,2,3,4四个数中随机地抽取一个数记为a,再在剩余的三个数中随机地抽取一个数记为b,根本领件总数n4312.1234565.在区间0,2中随机地取出两个数,求两数之和小于1的概率.解设x,y表示所取的任意两个数,由于x0,2,y0,2,以两数x,y为坐标的点在以2为边长的正方形区域内,设“两数和小于1为事件A,那么事件A所在区域为直线xy1的下方且在正方形的区域内,设其面积为S.1234566.关于x的二次函数f(x)ax2bx1,设集合P1,2,3,Q1,1,2,3,4,分别从集合P和Q中随机取一个数a和b得到数对(a,b).(1)列举出所有的数对(a,b),并求函数yf(x)有零

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论