语音识别综述 数字语音识别_第1页
语音识别综述 数字语音识别_第2页
语音识别综述 数字语音识别_第3页
语音识别综述 数字语音识别_第4页
语音识别综述 数字语音识别_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Speech Recognition 语音识别By TerrySpeech RecognitionnSpeech recognition is a high technology of processing voice signal into corresponding texts and commands by machine recognition and understanding.nSpeech recognition technology has involved signal processing, pattern recognition, probability theory a

2、nd information theory, vocal mechanism, hearing mechanism and artificial intelligence. nSpeech recognition technology is mainly consist of three module , including feature extraction, pattern matching technology and model training. Speech RecognitionnThe History of Speech Recognition Development 195

3、9Ten phoneme recognition system Audry System,Bell Labs20th,50slate 60s to early 70sLPC,DTWVQ,HMMSphinx System,Carnegie Mellon University,ANN,HMM80s90sIBM,Apple,ATT and NTT A Hot Area in AI,More processing Method,NowadaysSpeech RecognitionnCategory of method:nIsolated word recognition nConnected word

4、 recognitionnContinuous speech RecognitionnSpecific person recognition nNon-specific person recognitionnSmall vocabulary nMedian vocabularynLarge vocabularynInfinite vocabulary Speech RecognitionnMainly Methods:nTemplate Matching DTW(Dynamic Time Warping ) VQ(Vector Quantization)nHMM DHMM(Discrete H

5、idden Markov Model) CHMM(Continuous Hidden Markov Model) SCHMM(Semi-Continuous Hidden Markov Model)nANN(Artificial Neural Net)Speech RecognitionnSignal Pre-processingnFramming-5ms to 50msnEndpoint detection-detect the starting point and terminal pointnSpeech Enhancement-inhibit noise and improve spe

6、ech quality nICA-Independent Component AnalysisSpeech RecognitionnFeature ExtractionnLPC-Linear Prediction coefficientnLPCC-Linear Prediction Cepstrum Coefficient nMFCC-Mel Frequency Cepstrum Coefficient Cepstrum:njnjwenxeX)()(njnjwenxeX)()(njnjwenxeX)()(deeXmcjmjw| )(|ln21)(Speech RecognitionnSpeec

7、h RecognitionnTemplate Matching DTW(Dynamic Time Warping ) VQ(Vector Quantization)nHMM DHMM(Discrete Hidden Markov Model) CHMM(Continuous Hidden Markov Model) SCHMM(Semi-Continuous Hidden Markov Model)nANN(Artificial Neural Net)CRS Introduction Matlab GUICRS IntroductionnPeocedurenPre-ProcessingnFea

8、ture ExtractionnDTW+VQCRS IntroductionnPre-ProcessingnPre-emphasis nWindowing-Non-stationary signal Rectangle Window Hanning Window Haiming Window 1( )1H ZuZ 20.540.46cos()( )10nw nNCRS IntroductionnFeature ExtractionnEndPoint Detection Short-time energy Zero crossing rate(Double Gates) nMFCC-Based

9、on Auditory ModelDFT DFT逆DFT 信号 频谱 对数 倒谱 CRS IntroductionnTemplate MatchingnTemplate sets selectingSingle Optimal Selection MethodSFS(Sequence Forward Selecting)SBS(Sequence Backward Selecting)GRNN(General Regression Neural Network)n Template subsets (our own)Classifying according to the size of fra

10、me A.30 C.ElseCRS IntroductionnTemplate MatchingnDTW AlgorithmNnnNnnjiCWWnynxdD11),(),(min) 1()(, 2 , 1) 1()(, 2 , 1 , 0)() 1(:)(, 1) 1 (:nwnwnwnwnwnwMNww连续条件边界条件CRS IntroductionnTemplate MatchingnDTW Algorithm.)(,),() 1()(,) 1()(, 1),(:)2,(),1,(),(),(min, 1), 1(的约束条件取值满足就是其中nwmnmngnwnwnwnwmngmnDmnD

11、mngmnDmndmnDNnnNnnjiCWWnynxdD11),(),(minCRS IntroductionnTemplate MatchingnDTW AlgorithmDP(Dynamic Programming)123fori21(1. );1?(1,1):Re;2?(1,2):Re;( , )( , )min( 1,2,3);to n dofor jtom doDd ijDjD ijalMaxDjD ijalMaxD i jd i jD DDendendCRS IntroductionnClassic K-NNnSort the Distance-Sequnce By Small to largenFind the first K distance elementsnThe best match(result) is the number with the largest proportion in the K elementsnOur Own:Weighted K-NNCRS IntroductionnVQnTraining CodeBook),(1)(1TtittixxdTCDiitCx ),(minargijCiyityxtdxij)(min)(iikCDCDCRS IntroductionnRe

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论