电信运营商数据资源现状_第1页
电信运营商数据资源现状_第2页
电信运营商数据资源现状_第3页
电信运营商数据资源现状_第4页
电信运营商数据资源现状_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、电信运营商数据资源现状xx年9月电信运营商数据资源现状1电信运营商数据资源现状电信运营商积累和沉淀的数据是非常优质的数据资源,数据量非常庞大且数 据极具真实性和完整性。根据工信部数据,XX年,移动互联网接入流量消费达41.87亿G,同比增速高达103%流量意味着数据量,当前仅在移动互联网方面, 电信运营商就聚集了海量数据,且还在高速增长。在固定互联网方面,2015年,固定宽带接入时长高达50.03万亿分钟,同 比增长20.7%。当前,中国联通和中国电信已经将数据变现列为 xx年的KPI指 标,电信运营商在大数据运营方面的探索已经开始。以中国移动为例,目前有CRM BI、BOSS?系统记录着7.

2、5亿多用户的交互 信息,这些数据涉及客户基本信息,如通话数据、上网数据、数据业务使用信息、 智能终端信息、渠道接触信息等诸多方面,这无疑已具备大数据的“4V'特征:数据体量巨大(Volume、数据类型繁多(Variety )、价值密度低(Value)、处 理速度需要快(Velocity )。单就中国移动客服中心而言,客服中心每年服务客户超过500亿次,每月服 务客户超过30亿次,平均每月系统呼入量达 32亿次,人工呼入量2.47亿次, 平均每3秒就有1次1008611呼入,每个接线员每月接听5 0006 000个电话。 丰富的数据资源为电信运营商开展大数据应用方面的探索奠定了良好基础。

3、2电信运营商大数据挖掘方向近两年运营商对于大数据的经营发生了较大变化,从过去主要采集用户信息、 ARPU值等用于经分、客户维护等,逐渐转向信令数据、用户数据、APP数据的采集和分析等。这其中主要由于发生了几大变化,使得运营商更注重大数据:(1)移动互联网时代的到来:进入到移动互联网时代,手机变成用于上网 最多的终端。在移动端上,运营商可以监测到每个用户使用的流量、用户的常用APP每个APP打开次数、停留时间、搜索和浏览的网页等;(2)由增量用户抢夺变为存量用户维系:目前移动用户已达 13亿户,新 增空间已十分有限。运营商的策略讲从争夺新增用户转向存量市场的挖掘和用户 维系,并且提高单用户的AR

4、PU值。因此,运营商更加关注大数据,希冀从中能 够获得更多用户习惯和偏好进而通过针对性的措施提升 ARPU从运营商进行大数据挖掘的出发点进行考量, 运营商目前最为关心的将主要 聚焦于如何用大数据提升用户的流量使用量, 以及如何通过新的商业模式获取更 多收益。3电信运营商大数据运营模式十八大提出实施“国家大数据战略”,确定了大数据已经上升到国家战略层 面。大数据巨大的应用价值已经被普遍认同, 电信运营商作为大数据应用的先行 者之一,基本已部署了大数据平台并开展了各类应用, 但目前电信运营商的大数 据应用普遍面临以下困境:较大的投入和不确定的收益,使多数大数据应用缺少“性价比” ;受技术和政策法律

5、限制,电信运营商所能提供的数据种类较少,变现收 益有限;在新兴的大数据产业链上,电信运营商的地位管道化、边缘化。破解大数据困境,关键在于找到适合电信运营商的大数据商业模式,把数据潜在价值转化为收益。那么哪些商业模式是适合电信运营商大数据业务呢?电信运营商与合作伙伴的传统商业合作模式是:运营商向合作伙伴采购硬件、 软件和服务,然后向客户提供电信服务并收费。该模式下,合作伙伴只赚取设备、 软件和服务的销售费用,营收严重依赖运营商的资本开支,长期来看增长空间受 限。1:电信运营商与合作伙伴的传统商务模式上述商业模式能够维持的基础是:电信运营商的语音、宽带、流量等传统业 务相对比较简单,无需复杂的设备

6、和技术支持,客户的定制化需求非常有限。通信大数据业务与电信运营商的传统业务有很大不同, 数据量庞大,对采集 分析及安全管理的技术要求非常高, 客户的需求也复杂多样,而三大运营商在现 有的体制下,缺乏大数据思维,基本没有能力独立开展大数据业务。电信运营商在通信大数据业务的运营上, 通常是多种模式同时存在,并且相 互支撑。2:电信运营商大数据商业模式内部应用电信运营商的数据与电信业务的运营和维护相关性最强,因此,投入到内部应用能产生的数据价值最大。内部应用模式以服务于运营商内部客户、 提升既有 各项业务效率、降低运营成本为目的,采集和分析设备以及运营过程中生成的各 种数据,包括各种网管数据、设备日

7、志、信令、DPI记录、用户账单、投诉记录等。内部应用阶段的典型应用场景一是面向客户体验的网络规划、维护、优化, 二是面向电信业务的精准营销。例如中兴通讯与中国电信某省公司共同实施了基于大数据的无线网络运维 优化方案,以省为中心,基于中兴通讯的大数据平台,采集了全网各类数据,包 括DT/CQT CDT MR以及网管、投诉数据,针对无线网络实现了快速故障定位分 析,客户投诉处理速度明显加快,并且降低了网络质量检测分析的人力和时间成 本,提高了效率。方案实施后,针对无线网络的故障投诉处理效率提升了2030倍,每年可节省网络运维成本约 4500万元。内部应用模式可以帮助电信运营商持续优化运营, 降低运

8、营成本,提高效率, 并且是电信运营商开展对外大数据运营的基础。销售数据模式销售数据模式,即对外合作,把运营商将所掌握的有价值数据形成数据产品 或服务,如咨询报告、客流查询、广告服务、征信服务等,向有数据需求的客户 销售,以实现数据价值的货币化,即数据变现。由于电信运营商所掌握的数据种类比较单一, 往往对第三方业务的价值有限, 且单笔业务的收入规模往往较小,通常与投入的平台建设成本不成比例。因此, 销售数据模式要取得商业的成功,需要由专业团队对数据进行深度挖掘, 并关联 外部行业数据,以提升数据的价值。为了产生规模效应以及考虑安全性、 响应速 度、业务拓展,通常采用集约化方式,统一由一个单位负责

9、经营,以节省建设成 本,提高经营效率。业务运营模式电信运营商大多参与了智慧城市的建设,并介入数字家庭、智能汽车、医疗、 旅游、教育等行业。电信运营商若能以大数据为基础,建设行业运营平台,通过 参与业务运营,收集业务相关的数据并与电信数据结合, 服务于行业业务,则可 以大大增加数据的价值,并通过业务运营获得更高的收入。以智慧旅游为例,旅行社从运营商获得游客历史轨迹和目标客户的分类信息, 与自己掌握的历史订单数据结合,就可以发现潜在客户并为客户推荐目的地和旅 游产品。基于旅游大数据平台,旅行社可以将历史订单数据放到平台上, 与平台 上运营商提供的位置数据和用户分类数据关联计算,而运营商一方面可以获

10、取使 用数据的收入,亦可以分享计算结果,丰富用户旅游目的地选择和旅游商品的偏 好数据,提升旅游目的地和旅游产品推荐的准确率,实现更大的收益。3:电信运营商智慧旅游商业模式运营商还可以与商家合作,向目标客户提供旅游商品优惠券,将优惠券使用 数据与运营商的位置、用户分类数据关联分析,就可以准确掌握目标客户对特定 旅游商品的消费习惯,增加商品推荐的准确性,进而获取更大收益。通过运营智慧旅游业务,在旅游大数据平台上逐步汇聚了与旅游相关的各类 数据,包括政府公开信息、商品目录、消费记录、行程轨迹、网络舆情等,这些 数据相互关联,相互增值,为旅游产业链的所有参与者创造出更多的收益。数据运营模式电信运营商还

11、可以运营开放的大数据平台,转型成为大数据运营商。通过建 设并运营开放的大数据平台,电信运营商可以为客户提供大数据存储和计算服务, 甚至大数据的交换共享以及数据交易服务。电信运营商还可以把所掌握有价值的数据, 在进行脱敏处理后,开放到大数 据平台上,吸引有需求的客户,并实现电信数据能力的价值变现。运营大数据平台,电信运营商可以提升大数据产业链的地位,并获得新的收 入来源,包括数据存储计算租金、数据交易手续费,以及电信数据能力变现收入; 同时,电信运营商还能通过共享和数据交易, 获取到其他行业的数据,服务于自 营业务,甚至有可能基于多样化的数据形成新的创新业务。“国家大数据战略”的制定,为电信运营

12、商的数据运营模式带来机遇。各行 业大数据应用的快速发展,必然带来巨大的大数据基础设施,尤其是公共大数据 平台的需求。电信运营商具有良好的社会公信力、强大的技术能力和运营能力, 完全可以成为成功的大数据运营商。综上:内部应用模式是运营商大数据运营的基础和源头, 至少一两年内,内 部应用模式仍是电信运营商整个大数据业务的主要收益来源。数据的采集、处理和分析,仍会以服务内部应用为主。这也决定了其他3种模式下能够经营的数据 种类和质量。内部应用虽然目前收益大,但随着优化的深入,边际收益逐步减少。3种外 部变现模式的收入规模,将随着外部环境对数据需求的增加而增加, 是运营商未 来收入的增长点。同时,通过

13、外部变现模式能够获得电信行业以外的数据, 丰富 电信运营商的数据,并增加数据价值。销售数据模式的运营模式比较清晰, 且能快速获得收益,是目前电信运营商 应用较多的模式,但销售数据模式成本较高,若规模不大会导致无法覆盖成本业务运营模式结合智慧城市和“互联网+”建设浪潮,通过运营行业大数据 平台,既能结合业务实现数据变现,又能促进行业的智能化运营。数据运营模式,使电信运营商转型为大数据运营商,汇聚各行各业的数据, 提升了运营商产业链地位,创造出新的价值。“国家大数据战略”的实施,则是电信运营商转型为大数据运营商的历史机遇。4电信运营商大数据应用实践经过电信行业多年的发展,电信运营商目前已经积累了包

14、括行业综合数据、 电信业务分布与收入等结构化数据,与文本、音视频、图片等非结构化数据。从 数据规模来看,无论是用户信息、消费记录还是市场规模数据均体量庞大且基本 保持快速增长。目前我国电信产业正在从人口红利模式逐渐转向流量红利和数据红利, 其基 于大数据的转型已成新的趋势,海量数据资产将帮助电信行业完成业务创新、 精 准营销与资源优化配置等任务。4:电信领域大数据的应用场景就国内电信运营商而言,战略导向、管理体制、重视程度等多方面因素使得 其在大数据发展上始终是小心尝试,而并未真正从大数据中获得可观的收益。5 :国内电信运营商大数据应用实践中国联通建立中国联通移动用户上网记录查询系统,让用户明明白白消费用户体验提升中国电信打造DMP致力于提升运营商主营业务营销及精准广告投放效果精准营销中国电信发布了 “天翼大数据”品牌,推出精准营销、风险 防控、区域洞察、咨询报告4类数据型产品和大数 据云平台型产品,重点服务于旅游、金融、广告、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论