




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.漫谈数学的根本思想 史宁中一、应当把握数学思想从事数学教学工作的老师应当把握数学思想,有两个理由。首先,在现实的大学教育中,普遍开设了数学文化的课程,这是非常重要的,而数学思想是数学文化的核心。梁漱溟在?东西文化及其哲学?的书中区别了文化和文明:文化是那个时代人们生活的样子,文明是那个时代人们创造的东西。据此或答应以说,文化是生活的形态表现,文明是生活的物质表现。那么,数学文化就是数学的形态表现,可以包括:数学形式、数学历史、数学思想。其中思想是本质的,没有思想就没有文化。其次,是为了培养创新性人才。在修改?义务教育阶段数学课程标准?的过程中,把传统的“双基扩大为“四基,即在根底知识和根本技
2、能的根底上加上了根本思想和根本活动经历。根本活动经历的重要性是不言而喻的,因为数学的结果是“看出来的,而不是“证出来的,这就依赖于直观判断。正如希尔伯特在?几何根底?第一版的扉页引用康德的话:人类的一切知识都是从直观开场,从那里进到概念,而以理念完毕。几乎所有的大数学家都强调直观的重要性,数学直观的养成不仅依赖数学知识,更依赖考虑问题的方法,依赖思维经历的积累。那么,数学思想是什么呢?二、数学思想是什么人们通常所说的等量交换、图形结合、递归法等,只是数学思想方法而不是数学思想。根本数学思想不应当是个案的,而必须是一般的。这大概需要满足两个条件:一是数学产生以及数学开展过程中所必须依赖的那些思想
3、。二是学习过数学的人所具有的思维特征。这些特征表如今日常的生活之中。这就可以归纳为三种根本思想,即抽象、推理和模型。通过抽象,人们把外部世界与数学有关的东西抽象到数学内部,形成数学研究的对象,其思维特征是抽象才能强;通过推理,人们得到数学的命题和计算方法,促进数学内部的开展,其思维特征是逻辑才能强;通过模型,人们创造出具有表现力的数学语言,构建了数学与外部世界的桥梁,其思维特征是应用才能强。三、什么是抽象对于数学,抽象主要包括两方面的内容:数量与数量关系的抽象,图形与图形关系的抽象。其中关系是重要的,正如亚里士多德所说:数学家用抽象的方法对事物进展研究,去掉感性的东西剩下的只有数量和关系;对于
4、数学研究而言,线、角或者其他的量,不是作为存在而是作为关系。通过抽象得到数学的根本概念,这些根本概念包括:数学研究对象的定义、刻画对象之间关系的术语和符号以及刻画对象之间关系的运算方法。这种抽象是一种从感性详细上升到理性详细的思维过程,这样的抽象还只是第一次抽象。在此根底上,还能凭借想象和类比进展第二次抽象,其特点是符号化,得到那些并非直接来源于现实的数学概念和运算方法,比方实数和高维空间的概念,比方极限和四元数的运算。第二次抽象是此理性详细扩大到彼理性详细的思维过程,在这个意义上,数学并非仅仅研究那些直接来源于现实生活的东西。数量与数量关系的抽象。数学把数量抽象为数,经过长期的理论,形成了自
5、然数,并且用十个符号和位数表示。数量关系的本质是多与少,把这种关系抽象到数学内部就是数的大小,后来演变为一般的序关系。由大小关系派生出自然数的加法,逆运算产生了减法、简便运算产生了乘法、乘法逆运算产生了除法。数的运算本质是四那么运算,都是基于加法的,这也是计算机的运算原理。通过对运算性质的分析,抽象出运算法那么;通过对运算结果的分析,抽象出数的集合。数学还有一种运算,就是极限运算,这涉及数学的第二次抽象,起因于牛顿、莱布尼茨于1684年左右创立的微积分。微积分的运算根底是极限,为了合理解释极限,特别是合理解释一个变量趋于一个给定常量,1821年柯西给出了语言的描绘。这也开场了现代数学的特征:研
6、究对象的符号化、证明过程的形式化、逻辑推理的公理化。数学的第二次抽象就为这些特征效劳的。为了很好地描绘极限过程,需要解决实数的连续性问题;为了很好地定义实数,需要重新定义有理数。这样,小数形式的有理数就出现了,这已经完全背离分数形式有理数的初衷:部分与整体的关系,线段的比例关系。1872年,从小数形式的有理数出发,康托尔用根本序列的方法定义实数,解决了实数的运算问题;戴德金用分割的方法定义实数,解决了实数的连续性问题。在此根底上,1889年佩亚诺给出算术公理体系,1908年策梅洛给出集合论公理体系,建立了现代数学的根底。图形与图形关系的抽象。欧几里得最初抽象出点、线、面这些几何学的研究对象是有
7、物理属性的,比方,点是没有部分的那种东西。但凡详细的就必然会出现悖论,比方,如何解释两条直线相交必然交于一点?两条直线怎么能交到没有部分的那种东西上?随着几何学研究的深化,特别是非欧几何学的出现,人们需要重新审视传统的欧几里得几何学。1898年,希尔伯特重新定义了点、线、面:用大写字母A表示点,用小写字母a表示线,用希腊字母表示面,这完全是符号化的定义,然后给出了五组公理,实现了几何研究的公理体系。这些公理体系的建立,完成了数学的第二次抽象。至少在形式上,数学的研究已经脱离了现实,正如希尔伯特所说:无论称它们为点、线、面,还是称它们为桌子、椅子、啤酒瓶,最终得到的结论都是一样的。四、什么是推理
8、人们通常认为思维形式有三种,即形象思维、逻辑思维和辩证思维,数学主要依赖的是逻辑思维。逻辑思维的集中表现是逻辑推理,人们通过推理,可以深化地理解数学研究对象之间的逻辑关系,并且可以用抽象了的术语和符号明晰地描绘这种关系。因此,人们通过推理形成各种命题、定理和运算法那么,促进了数学的开展。随着数学研究的不断深化,根据研究问题的不同数学逐渐形成各个分支,甚至形成各种流派。既便如此,因为数学研究问题的出发点是一致的,逻辑推理规那么也是一致的,因此,至少到如今的研究结果说明,数学的整体一致性是不可动摇的。也就是说,数学的各个分支所研究的问题似乎是风马牛不相及的,但是,数学各个分支得到的结果之间却是互相
9、协调的。为此,人们不能不为数学的这种整体一致性感到惊叹:数学似乎蕴含着类似真理那样的合理性。所谓推理,是指从一个命题判断到另一个命题判断的思维过程,其中命题是指可供是否判断的语句;所谓有逻辑的推理,是指所涉及的命题内涵之间具有某种传递性。在本质上,只存在两种形式的逻辑推理,一种是归纳推理,一种是演绎推理。归纳推理。归纳推理是命题内涵由小到大的推理,是一种从特殊到一般的推理。因此,通过归纳推理得到的结论是或然的。归纳推理包括归纳法、类比法、简单枚举法、数据分析等等。人们借助归纳推理,从经历过的东西出发推断未曾经历过的东西,这便是上面所说的“看出数学结果,看出的数学结果不一定是正确的,但指引了数学
10、研究的方向。演绎推理。演绎推理是命题内涵由大到小的推理,是一种从一般到特殊的推理。因此,通过演绎推理得到的结论是必然的。演绎推理包括三段论、反证法、数学归纳法、算法逻辑等。人们借助演绎推理,按照假设前提和规定的法那么验证那些通过推断得到的结论,这便是数学的“证明,通过证明得到的结论是正确的,但不能使命题的内涵得到扩张。数学的结论之所以具有类似真理那样的合理性,或者说数学具有严谨性,正是因为数学的整个推理过程严格地遵循了这两种形式的推理。我们不可能把抽象和推理截然分开:抽象的过程、特别是第二次抽象的过程要依赖推理;而两种形式的推理、特别是归纳推理的过程要依赖抽象。五、抽象的存在关于抽象了的东西是
11、如何存在的,这是从古至今争论的话题,这个争论是从古希腊学者柏拉图和亚里士多德开场。或许正是因为有了这个争论才导致了数学的严谨性,因此,只有很好地理解这个问题,才能更好地把握数学的思想。柏拉图认为人的经历是不可靠的,经历可能随着时间的改变而改变,也可能随着场合的改变而改变。因此,所有基于经历的概念都是不可靠的,也是不可能的。数学的概念不应当是经历意义上的存在,而应当是一种永久的存在。柏拉图把这种永久的存在称为理念,并且认为只有理念才是真正的存在。因此,数学是一种“发现,即发现了那些“实际存在了的东西。这便是“唯实论。亚里士多德的想法正好相反。一般概念是对许多详细存在的事物的共性抽象得到的,所以一
12、般概念不可能是真正的存在,一般概念表现于特殊事物,每个详细存在都是一般概念的特例。因此,数学的研究对象、以及表述研究对象之间关系术语都是抽象出来的,在这个意义上,数学只能是一种“创造。这便是“唯名论。事实上,抽象了的东西不是详细的存在,而是一种理念的存在,或者说,是一种抽象的存在。这便是?周易·系辞?中“形而上者谓之道,形而下者谓之器所说的“形。比方,看到足球、乒乓球,在头脑中形成圆的概念,这个概念就是一种抽象的存在,这种存在已经脱离了详细的足球和乒乓球。借助这种抽象的概念,可以在黑板上画出圆,甚至还可以定义圆,可以研究圆的性质。这种抽象的存在构成了数学研究的根底,数学研究的是普遍存
13、在的东西,而不是某个详细存在的东西。正是由于这种普遍性,数学才可以得到广泛的应用。数学就是研究那些抽象了的存在的东西。但是,通过上面的讨论可以看到,即便数学的第二次抽象在形式上是美妙的,但其功能至多是很好地解释了第一次抽象得到的那些结果,因此,在本质上无重大创造可言。而数学的第一次抽象是来源于经历的,抽象的对象是现实世界,而只有直接从现实世界中抽象出来的那些问题,才是朝气蓬勃的,才可能具有不断开展的生命力。正如冯·诺伊曼所说:数学思想来源于经历,我想这一点是比较接近真理的数学思想一旦被构思出来,这门学科就开场经历它本身所特有的生命。事实上,认为数学是一门创造性的、受审美因素支配的学科
14、,比认为数学是一门别的、特别是经历的学科要更确切一些。换句话说,在间隔 经历根源很远的地方,或者在屡次“抽象的近亲繁殖之后,一门数学学科就有退化的危险。那么,数学的那些概念、原理和思维方法应当如何与现实世界联络呢?合理的思维过程具有理性加工的功能,而现实世界的那些东西一旦经过理性加工,不仅具有了一般性并且具有了真实性。六、什么是模型数学模型与通常所说的数学应用是有所区别的。数学应用涉及的范围相当广泛,可以泛指应用数学解决实际问题的所有事情。虽然数学模型也属于数学应用的范畴,但更侧重于用数学的概念、原理和思维方法描绘现实世界中的那些规律性的东西。数学模型是指用数学的语言描绘现实世界所依赖的思想。
15、数学模型使数学走出数学的世界,是构建数学与现实世界的桥梁。通俗地说,数学模型是借用数学的语言讲述现实世界的故事。数学模型的出发点不仅是数学,还包括现实世界中的那些将要讲述的东西。就像建筑桥梁一样,在建筑之前必须清楚要把桥梁建筑在哪里。并且,研究手法也不是单向的,需要从数学和现实这两个出发点开场,规划研究途径、构建描绘用语、验证研究结果、解释结果含义,从而得到与现实世界相容的、可以描绘现实世界的结论。在现实世界中,放之四海而皆准的东西是不存在的,数学模型必然有其适用范围,这个适用范围通常表现于模型的假设前提、模型的初始值、模型参数的某些限制。在这个意义上,所有的数学表达,比方函数、方程、公式等,
16、本身都不是数学模型,而是描绘现实世界的数学语言。因为数学模型具有数学和现实这两个出发点,数学模型就不完全属于数学。大多数应用性很强的数学模型的命名,都依赖于所描绘的学科背景。比方,在生物中:种群增长模型,基因复制模型等;在医药学中:专家诊断模型,疾病靶向模型等;在气象学中:大气环流模型,中长期预报模型等;在地质学中:板块构造模型,地下水模型等;在经济学中:股票衍生模型,组合投资模型等;在管理学中:投入产出模型,人力资源模型等;在社会学中:人口开展模型,信息传播模型等。在物理学和化学中,各类数学模型更是百花齐放。语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。假如有选择循序渐进地让学
17、生背诵一些优秀篇目、精彩段落,对进步学生的程度会大有裨益。如今,不少语文老师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果老师费力,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的为难场面的关键就是对文章读的不熟。常言道“书读百遍,其义自见,假如有目的、有方案地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然浸透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和开展。数学
18、模型的价值取向往往不是数学本身,而是对描绘学科所起的作用。比方,那些获得诺贝尔经济学奖的数学模型,人们关注的并不是模型的数学价值,而是实际应用价值。但是,数学家们在构建数学模型和实际应用的过程中,必然会从数学的角度汲取“创造数学的灵感,促进数学自身的开展,就像冯·诺伊曼所说过的那样。唐宋或更早之前,针对“经学“律学“算学和“书学各科目,其相应传授者称为“博士,这与当今“博士含义已经相去甚远。而对那些特别讲授“武事或讲解“经籍者,又称“讲师。“教授和“助教均原为学官称谓。前者始于宋,乃“宗学“律学“医学“武学等科目的讲授者;而后者那么于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教在古代不仅要作入流的学问,其教书育人的职责也十清楚晰。唐代国子学、太学等所设之“助教一席,也是当朝打眼的学官。至明清两代,只设国子监国子学一科的“助教,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士“讲师,还是“教授“助教,其今日老师应具有的根本概念都具有了。数学的根本思想,即抽象、推理、模型,为数学由现实到数学、数学内部开展、由数学到现实提供了思维功能,理性地把握这些功能对数学的教学是有好处的。虽然现代数学的特征是符号化、形式化和公理化,但其本质是为了更好地描绘数学的成果。正如阿蒂亚所说:严格数学论证的作用在于使得本来是主观的、极度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 故事代替道理:《不要把问题怪到别人身上》
- 海外务工人员意外伤害及体检保险补充协议
- 海外留学行李保险与托运质量双保障协议
- 影视后期特效合成与影视衍生品开发合同
- 物流公司供应链总监职位竞聘与培训与发展合同
- 美容仪器摄影服务与市场推广协议
- 新能源汽车充电设施对赌协议(业绩补偿条款)及充电桩建设合作协议
- 2025年中国半导体光电器件行业市场规模调研及投资前景研究分析报告
- 电商平台限时抢购活动策划与执行服务协议
- 2025年中国百岁老人期货行业市场前景预测及投资价值评估分析报告
- 糖尿病患者的饮食指导-课件
- 医院药物临床试验伦理委员会伦理审查申请及受理表
- 2021译林版高中英语选择性必修三课文翻译
- 智能网联汽车线控技术课件
- 郑州大学ppt模板
- (完整版)ECRS培训课件
- 学校端午假期致学生家长一封信
- 第1本书出体旅程journeys out of the body精教版2003版
- 塑料制品事业部独立核算体系文件
- 《鸿门宴》话剧剧本
- 灸法操作规程完整
评论
0/150
提交评论