版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上第一章三角形的证明第一节 等腰三角形(一)【学习目标】1、理解证明基础的几条公理的内容,用这些公理证明等腰三角形的性质定理;2、熟悉证明的基本步骤和书写格式;【学习方法】自主探究与合作交流相结合。【学习重难点】重点:探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法。难点:明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。【学习过程】模块一 预习反馈一、学习准备1、两边及其_对应相等的两个三角形全等(SAS);2、两角及其_对应相等的两个三角形全等(ASA);3、_对应相等的两个三角形全等(SSS);4、_及其中一角的对边对应相等的两个三
2、角形全等(AAS);5、全等三角形的对应边_,对应角_。6、有_的三角形叫做等腰三角形,相等的两边叫做_,两腰的夹角叫做_,腰与底边的夹角叫做_,_的三角形叫做等边三角形。7、阅读教材:第1节等腰三角形。二、教材精读8、已知:ABC是等腰三角形,AB=AC 求证:B=C (提示:利用三角形全等证明。你能想到哪些方法?)归纳:1、等腰三角形性质定理: (简称“等边对等角”); 推理格式:AB=AC,_(等边对等角) 2、推论(三线合一): ;推理格式:AB=AC,ADBC, AB=AC, BD=DC, AB=AC,_平分_, BD=DC,AD平分_, _,_平分_, _,实践练习: 1、等腰三角
3、形的两边分别是7 cm和3 cm,则周长为 _ 。 2、如图在ABC中,AB = AC,ADAC,BAC = 100°。求:1、B的度数。模块二 合作探究9、如图,已知D =C,A =B,且AE = BF。求证:AD = BC。10、如图,在ABC中,D为AC上一点,并且AB = AD,DB = DC,若C = 29°,求A。模块三 形成提升1、 填空:(1)如图,在ABC中,AB = AC,点D在AC上,且BD = BC = AD。请找出所有的等腰三角形 _ 。(2)等腰三角形的顶角为50°,则它的底角为 _ 。(3)等腰三角形的一个角为40°,则另两
4、个角为 _ 。(4)等腰三角形的一个角为100°,则另两个角为 _ 。(5)等边三角形的三个角都相等,并且每个角都等于 _ 度。2、如图,在ABC中,AB = AC,D是BC边上的中点,且DEAB,DFAC。 求证:1 =2。模块四 小结反思一、本课知识:1、等腰三角形性质定理: (简称“等边对等角”);2、推论(三线合一): ;二、本课典例:利用等腰三角形的性质和定理和三角形的全等,求角和边。三、我的困惑:(你一定要认真思考哦!把它写在下面,好吗?)第一章三角形的证明第一节 等腰三角形(二)【学习目标】1 经历“探索发现猜想证明”过程,用三角形全等证明等腰三角形的一些线段相等。2
5、借助等腰三角形的三线合一推论解决实际问题。【学习方法】自主探究与合作交流相结合。 【学习重难点】重点:证明等腰三角形的 一些线段相等。难点:能够用综合法证明等腰三角形的有关性质和定理。【学习过程】模块一 预习反馈一、学习准备1、等腰三角形性质定理: (简称“等边对等角”);2、推论(三线合一): ;3、阅读教材:第1节等腰三角形二、教材精读4、证明:等腰三角形的两底角的角平分线相等已知:如图,ABC中,AB=AC,BD、CE是ABC的角平分线,求证:BD=CE证明:AB=AC( ) _(等边对等角) 又BD、CE是ABC的角平分线,DBC= ABC,ECB=_, DBC=ECB 在BCE与CB
6、D中,5、推理论证:等腰三角形两腰上的中线(高)相等;(画图、写出已知、求证、证明过程)已知:如图,求证:证明:归纳:等腰三角形两腰上的中线(高线)、两底角的平分线 _ 。 6、已知:如图,在ABC中,AB=AC=BC,求证:A=B=C归纳:等边三角形的三个内角都_,并且每个内角都等于_°。模块二 合作探究6、在如图的等腰三角形ABC中,(1)如果ABD=ABC,ACE=ACB,那么BD=CE吗?由此,你能得到一个什么结论?(2)如果AD= AC,AE = AB,那么BD=CE吗?由此你得到什么结论? 7、如图,中,BDAC于D,CEAB于E,BD = CE。求证:是等腰三角形。模块
7、三 形成提升1、 如图,E是ABC内的一点,AB = AC,连接AE、BE、CE,且BE = CE,延长AE,交BC边于点D。求证:ADBC。2、已知:如图,点D,E在三角形ABC的边BC上,AD=AE,AB=AC,求证:BD=CE模块四 小结反思一、本课知识:1、等腰三角形两腰上的中线(高线)、两底角的平分线 _ 。2、等边三角形的三个内角都_,并且每个内角都等于_°。二、本课典例: 三、我的困惑:(你一定要认真思考哦!把它写在下面,好吗?)第一章三角形的证明第一节 等腰三角形(三)【学习目标】1、 能够用综合法证明等腰三角形的判定定理。2、运用等腰三角形的判定定理解决一些实际问题
8、。【学习方法】自主探究与合作交流相结合。【学习重难点】重点:等腰三角形的判定定理。 难点:灵活运用等腰三角形的判定定理和性质解决实际问题。【学习过程】模块一 预习反馈一、学习准备1、等腰三角形性质定理: (简称“等边对等角”);2、推论(三线合一): ;3、证明三角形全等的方法:SAS、_、_、_.4、阅读教材:第1节等腰三角形二、教材精读5、已知:如图,在ABC中,B=C,求证:AB=AC (提示:构造两个全等三角形证明)归纳:1、有两个角相等的三角形是_三角形。(简称“等角对等边”) 推理格式:B=C,_(等角对等边)2、反证法证明问题的一般步骤:从结论的 _ 出发,先假设命题的结论 _
9、,然后推出与定义、公理、已证定理或已知条件相 _ 的结果,从而证明命题的结论一定成立。这种证明方法称为 _ 。实践练习:1、用反证法证明:在一个三角形中,至少有一个内角小于或等于60°。2、 如图,在ABC中,AB = AC,DEBC,求证:ADE是等腰三角形。模块二 合作探究1、 如图,在中,ABC的平分线交AC于点D,DEBC。求证:EBD是等腰三角形。2、如图,一艘船从A处出发,以18节的速度向正北航行,经过10时到达B处。分别从A、B望灯塔C,测得NAC=42°,NBC=84°。求 B处到灯塔C 的距离。ABNC模块三 形成提升1、已知:如图,在三角形AB
10、C中,AB=AC,D是AB上的一点,E是AC延长线上的一点且DB=CE,DE交BC于M.求证:MD=ME.2、用反证法证明:一个三角形中不能有两个直角。模块四 小结反思一、本课知识:1、等腰三角形的判定定理: (简称“等角对等边”);2、反证法: _ ;_二、本课典例:三、我的困惑:(你一定要认真思考哦!把它写在下面,好吗?)第一章三角形的证明第一节 等腰三角形(四) 【学习目标】1、能够用综合法证明等边三角形的判定定理,进一步学习证明的基本步骤和书写格式。2、运用等边三角形的性质和判定定理证明直角三角形的有关性质。【学习方法】自主探究与合作交流相结合。【学习重难点】重点:等边三角形的判定定理
11、和直角三角形的有关性质。难点:运用等边三角形的判定定理和直角三角形的有关性质解决实际问题。【学习过程】模块一 预习反馈一、学习准备1、三边都_的三角形是等边三角形。2、等边三角形的三个内角都_,并且都等于_。3、等腰三角形的判定:有_相等的三角形是等腰三角形(简称“等角对等边”)4、等腰三角形的性质:等腰三角形两底角_(简称“_”)5、阅读教材:第1节等腰三角形二、教材精读6、已知:如图,在ABC中,A=B=C。 求证:ABC是等边三角形。证明:A=B,B=C AC=_,AB=_, 7、一个等腰三角形满足什么条件便称为等边三角形?ABC1234D8、已知:如图ABC是直角三角形,BAC=30&
12、#176;,求证:BC=AB证明:延长BC到D,使CD=BC,再连接AD 在ABC和ADC中, ABC是直角三角形, 1=_° 又1+2=180°,所以2=_ 归纳:1、等边三角形的判定1) 三条边都_的三角形是等边三角形 。2) 三个_都相等的三角形是等边三角形 。3) 有一个角等于_的等腰三角形是等边三角形。2、等边三角形是特殊的_三角形,它具有等腰三角形的一切性质,除此之外,它还具有每个内角都是_的特殊性质。3、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的_。模块二 合作探究9、填空:(1)如图1,BC = AC,若 ,则ABC是等边
13、三角形。(2)如图2,AB = AC,ADBC,BD = 4,若AB = ,则ABC是等边三角形。(3)如图3,在Rt中,B = 30°,AC = 6cm,则AB = ;若AB = 7,则AC = 。图1 图2 图310、已知:如图,ABC是等边三角形,DEBC,交AB、AC于D、E。求证:ADE 是等边三角形。证明:DEBC 11、如图,在Rt中,B = 30°,BD = AD,BD = 12,求DC的长。模块三 形成提升1、 已知:中,AB = 40,求DB的长。2、如右图,已知ABC和BDE都是等边三角形,求证:AE=CD。模块四 小结反思一、本课知识:1、三条边都_
14、的三角形是等边三角形 。2、三个_都相等的三角形是等边三角形 。3、有一个角等于_°的等腰三角形是等边三角形。4、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的_。二、本课典例: 三、我的困惑:(你一定要认真思考哦!把它写在下面,好吗?)第一章三角形的证明第二节 直角三角形(一)【学习目标】1、 了解勾股定理及其逆定理的证明方法。2、 结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。【学习方法】自主探究与合作交流相结合。【学习重难点】重点:勾股定理及其逆定理。难点:结合具体例子了解逆命题的概念。【学习过程】模块一 预
15、习反馈一、学习准备1、直角三角形:有一个角是_的三角形叫做直角三角形。2、边的关系:直角三角形两条直角边的_等于斜边的平方。 角的关系:直角三角形的两个锐角_。3、有两个角_的三角形是直角三角形。4、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的_。5、阅读教材:第2节直角三角形二、教材精读6、用两种不同的方法表示右图梯形的面积。解:S= (上底+下底)×高=S=因为S= S,所以归纳:勾股定理:直角三角形两条直角边的_等于斜边的平方。7、已知:如图,在ABC,AB2+AC2=BC2,求证:ABC是直角三角形。证明:作出RtABC,使A=90°
16、;,AB=AB,AC=AC,则BC2=_(勾股定理)AB2+AC2=BC2 ,AB=AB,AC=AC,BC2= BC2BC=_在ABC和ABC中, A=A=90°(全等三角形的对应角相等) ABCABC (_) 因此,ABC是直角三角形。归纳:1、勾股定理的逆定理:AB2+AC2=BC2,_=90°(ABC是直角三角形)2、互逆命题:在两个命题中,如果一个命题的_和_分别是另一个命题的_和_,那么这两个命题称为_,其中一个命题称为另一个命题的_。3、互逆定理:一个命题是真命题,它的逆命题却_是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为_
17、,其中一个定理称为另一个定理的_。模块二 合作探究8、已知:如图,ABC中,CDAB于D,AC=4,BC=3,DB=。(1)求DC的长;(2)求AD的长;(3)求AB的长;(4)求证:ABC是直角三角形.9、某校把一块形状为直角三角形的废地开辟为生物园,如图5所示,ACB90°,AC80米,BC60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?10、说出下列命题的逆命题,并判断每对命题的真假。(1)如果ab=0,那么a=0,b=0;(2)初三(6)班有62位同学;(3)等边对等角;11、找出下列定理有哪
18、些存在逆定理,并把它写出来。(1)如果,则 (2)全等三角形对应角相等(3)对顶角相等模块三 形成提升1、直角三角形的两直角边为9、12,则斜边为 ;直角三角形的两边分别为13和 5,则另一条边为 。如果三角形的三边长是6、10、8,则这个三角形是 三角形。2、如图,ABBC,DCBC,E是BC上一点,BAE=DEC=60°,AB=3,CE=4,求:AD模块四 小结反思一、本课知识:1、勾股定理:直角三角形两条直角边的_等于斜边的平方。2、如果三角形两边的平方_等于第三边的_,那么这个三角形是_三角形。二、本课典例: 三、我的困惑:(你一定要认真思考哦!把它写在下面,好吗?第一章三角
19、形的证明第二节 直角三角形(二) 【学习目标】1、进一步掌握推理证明的方法,发展演绎推理能力。2、了解勾股定理及其逆定理的证明方法,能够证明直角三角形全等“HL”判定定理【学习方法】自主探究与合作交流相结合。【学习重难点】直角三角形全等“HL”判定定理。【学习过程】模块一 预习反馈一、学习准备1、一般三角形全等判定方法有: 。2、直角三角形的判定:有一个角是_的三角形叫做直角三角形。有两个角互余的三角形是_三角形。如果三角形两边的平方_等于第三边的_,那么这个三角形是_三角形。3、阅读教材:第2节直角三角形二、教材精读4、已知:如图,ABC和ABC中C=C=90°,且AB=AB,BC
20、=BC,求证:ABCABC证明:RtABC和RtABC中,AC2=_ , AC2=_2,(勾股定理)AB=AB,BC=BC,AC2=_AC=_ABC ABC( )归纳:斜边和一条_对应相等的两个_三角形全等。(“斜边、直角边”或“_”)推理格式:在RtABC和RtABC中,C=C=90° AB=ABBC=BC ABC _ABC(HL)实践练习:如图,B =E = 90°,AC = DF,BF = EC。求证:BA = ED。模块二 合作探究5、在RtABC中,C = 90°,且DEAB,CD = ED,求证:AD是BAC的角平分线。6、如图,ACB = ADB =
21、 90°,AC = AD,E是AB上的一点,求证:CE = DE。7、用三角尺可以作角平线,如图,在已知AOB的两边上分别取点M、N,使OM=ON,再过点M作OA的垂线,过点N作OB的垂线,两垂线交于点P,那么射线OP就是AOB的平分线。证明:模块三 形成提升1、如图,RtABC和RtDEF,C=F=90°。(1)若A=D,BC=EF,则RtABCRtDEF的依据是_.(2)若A=D,AC=DF,则RtABCRtDEF的依据是_.(3)若AC=DF,CB=FE,则RtABCRtDEF的依据是_.2、如图,AD是BAC的角平分线,DEAB,DFAC,BD = CD。求证:EB
22、 = FC。模块四 小结反思一、本课知识:1、斜边和一条_对应相等的两个_三角形全等。(“斜边、直角边”或“_”)二、本课典例: 三、我的困惑:(你一定要认真思考哦!把它写在下面,好吗?)第一章三角形的证明第三节 线段的垂直平分线(一)【学习目标】1、能够证明线段垂直平分线的性质定理、判定定理及其相关结论。2能够利用尺规作已知线段的垂直平分线。【学习方法】自主探究与合作交流相结合。【学习重难点】重点:线段的垂直平分线性质与逆定理及其的应用。 难点:线段的垂直平分线的逆定理的理解和证明。【学习过程】模块一 预习反馈一、学习准备1、段的垂直平分线:垂直且_一条线段的直线是这条线段的垂直平分线。2、
23、线段垂直平分线上的_到这条线段两个端点的距离_。3、阅读教材:第3节线段的垂直平分线二、教材精读4、已知:如图,直线MNAB,垂足是C,且AC=BC,P是MN上的任意一点。求证:PA=PB。证明:MNAB,PCA=_=90°在PC和PCB中,PCAPCB( )PA=PB(全等三角形的对应边相等)归纳:线段垂直平分线上的_到这条线段两个端点的距离_。推理格式:PCAB,AC=_(点P在线段AB的垂直平分线MN上), =PB5、这个定理的逆命题:到线段两个端点的距离相等的点, _,它是_命题。如果是真命题请证明。已知:如图,AB=AC求证:点A在线段BC的垂直平分线上证明:(提示:利用等
24、腰三角形三线合一)归纳:定理:到一条线段两个端点距离_的点,在这条线段的_线上。推理格式:AB = AC,_点在线段BC的 _。模块二 合作探究6、已知:线段AB 解:作图如下:求作:线段AB的垂直平分线CD。来源:Z_xx_k.Com作法:(1)分别以点A、B为圆心,以大于ABAB的长为半径作弧,两弧相交于点C、D(2)作直线CD。即直线CD就是线段AB的垂直平分线。归纳:因为直线CD与线段AB的交点就是AB的中点,所以我们也用这种方法作线段的_。7、如图,在ABC中,C = 90°,DE是AB的垂直平分线。1)则BD = ;2)若B = 40°,则BAC = °
25、;,DAB = °,DAC = °,CDA = °;3)若AC= 4, BC = 5,则DA + DC = _ ,ACD的周长为 _ 。8、如图,DE为ABC的AB边的垂直平分线,D为垂足,DE交BC于E, AC = 5,BC = 8,求:AEC的周长。模块三 形成提升在ABC中,AB = AC,AB的垂直平分线交AC于D,ABC和DBC的周长分别是60cm和38cm,求AB、BC。模块四 小结反思一、本课知识: 1、线段垂直平分线上的_到这条线段两个端点的距离_。2、到一条线段两个端点距离_的点,在这条线段的_线上。二、本课典例: 三、我的困惑:(你一定要认真思
26、考哦!把它写在下面,好吗?)第一章三角形的证明第三节 线段的垂直平分线(二)【学习目标】1、知道三角形三条边的垂直平分线的性质。2、能够利用尺规作已知底边及底边上的高,能利用尺规作出等腰三角形。【学习方法】自主探究与合作交流相结合。【学习重难点】重点:用尺规作已知线段垂直平分线。难点:已知底边及底边上的高求作等腰三角形。【学习过程】模块一 预习反馈一、学习准备1、尺规作图是指用 作图。2、线段垂直平分线上的点到 。3、到一条线段两个端点距离相等的点,在 。4、阅读教材:第3节线段的垂直平分线二、教材精读5、已知:如图,在ABC中,设AB、BC的垂直平分线相交于点P,求证:AB,BC,AC的垂直
27、平分线相交于点P,且AP=BP=CP。证明:连接AP、BP、CP,点P在线段AB的垂直平分线上,PA=_(线段垂直平分线上的点到这条线段两个端点距离相等)点P在线段BC的垂直平分线上,归纳:三角形三条边的_线相交于_,并且这一点到三个_的距离相等。推理格式:点P是ABC的三条边的垂直平分线的交点, PA=_=_. 6、做一做:已知底边上的高,求作等腰三角形。已知:线段a、h求作:ABC,使AB=AC,且BC=a,高AD=h.作法:(1)作线段AB=a; 解:作图如下:(2)作线段AB的垂直平分线,交BC于点D,(3)在L上作线段DC,使DC=h(4)连接AC,BC。ABC为所求的等腰三角形。模
28、块二 合作探究7、如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站建在什么地方,才能使它到A、B的距离相等? 8、已知直线AB和AB上(外)一点P,利用尺规作的垂线,使它经过点P。 模块三 形成提升1、ABC的三条边的垂直平分线相交于点P,若PA = 10,则PB= _ ,PC=_ 。2、已知:线段=3cm、C=5cm求作:RtABC,使斜边AB = C作法:3、已知:ABC中,AB=AC,AD是BC边上的中线,AB的垂直平分线交AD于O。求证:OA=OB=OC模块四 小结反思一、本课知识:1、三角形三条边的_线相交于_,并且这一点到三个_的距离相等。二、本课典例:三、我的困
29、惑:(你一定要认真思考哦!把它写在下面,好吗?)第一章三角形的证明第四节 角平分(一)【学习目标】1、 能够证明角平分线的性质定理、判定定理。2、 能够运用角平分线的性质定理、判定定理解决几何问题。【学习方法】自主探究与合作交流相结合。【学习重难点】重点:角平分线的性质定理、判定定理。难点:利用角平分线的性质定理、判定定理解决几何问题。【学习过程】模块一 预习反馈一、学习准备1、点到直线的距离:由这点向直线引_,这点到垂足间线段的_叫做这点到直线的距离。2、角平分线性质定理:角平分线上的_到这个角的两边的距离_。3、阅读教材P28P29:第4节角平分线二、教材精读4、已知:如图,OC是AOB的
30、角平分线,点P在OC上,PDOB,PEOA,垂足分别为D,E,求证:PD=PE证明:PDOB,PEOA,垂足分别为D,E, PDO=_=90° OC是AOB的角平分线,归纳:角平分线上的_到这个角的两边的距离_。(证明两条线段相等)推理格式:点P在AOB的角平分线上,PEOA,PDOB,PD= _ 5、已知:如图,点P为AOB内一点,PEOA,PDOB,且PD = PE,求证:OP平分AOB。归纳:在一个角的内部,且到角的两边距离相等的_,在这个角的平分线上(证明角相等)推理格式:PEOA,PDOB,且PD = PE, 点P平分 。实践练习:如图,在ABC中,ACB=90°
31、,BE平分ABC,DEAB于D,如果AC=3 cm,那么AE+DE等于( ) A.2 cmB.3 cm C.4 cm D.5 cm模块二 合作探究6、如图,CDAB,BEAC,垂足分别为D、E,BE、CD相交于O,1 =2,求证:OB = OC。7、如图,E是线段AC上的一点,ABEB于B,ADED于D,且1 =2,CB = CD。求证:3 =4。8、如图,在ABC中,AC = BC,C = 90°,AD是ABC的角平分线,DEAB,垂足为E。(1)已知CD = 4cm,求AC的长;(2)求证:AB = AC + CD。模块三 形成提升1、 如右图,已知BEAC于E,CFAB于F,B
32、E、CF相交于点D,若BD=CD。求证:AD平分BAC。2、如图,在ABC中,BEAC,ADBC,AD、BE相交于点P,AE = BD。求证:P在ACB的角平分线上。模块四 小结反思一、本课知识:1、角平分线上的_到这个角的两边的距离_。(证明两条线段相等)2、在一个角的内部,且到角的两边距离相等的_,在这个角的平分线上.(证明角相等)二、本课典例: 三、我的困惑:(你一定要认真思考哦!把它写在下面,好吗?)第一章三角形的证明第四节 角平分线(二)【学习目标】1、 进一步发展学生的推理证明意识和能力。2、 能够利用尺规作已知角的平分线。【学习方法】自主探究与合作交流相结合。【学习重难点】重点:
33、角平分线的相关结论。难点:角平分线的相关结论的应用。【学习过程】模块一 预习反馈一、学习准备1、角平分线上的点到 。2、在一个角的内部,且到角的两边距离相等的点,在 。3、阅读教材:P30P31第4节角平分线二、教材精读4、已知:点P是ABC的两条角平分线BM、CN的交点,求证:A的平分线经过点P,且PD=PE=PF。ABCMNPDEF 证明:过点P作PEBC于E,PFAC于F,PDAB于D, CN是ABC的角分线,点P为CN上一点, PE=_( ) BM是ABC的角分线,点P为BM上一点, PE=_( )归纳:三角形三条角平分线相交于一_,并且这一点到三角形三条_的距离_。推理格式:点P是A
34、BC的三条角平分线的交点,且PEBC,PFAC,PDAB, PD=_=_. 实践练习:(1)如图4,点P为ABC三条角平分线交点,PDAB,PEBC,PFAC,则PD_PE_PF.(2)如图5,P是AOB平分线上任意一点,且PD=2cm,若使PE=2cm,则PE与OB的关系是_. 图4 图5 模块二 合作探究5、用尺规作图法作出图1中各个角的平分线。图16、如图2,求作一点P,使PC = PD,并且点P到AOB两边的距离相等。(用尺规作图)7、已知:如图在ABC中,C=90°,AD平分BAC,交BC于D,若BC=32,BDCD=97,求:D到AB边的距离.模块三 形成提升1、一张直角
35、三角形的纸片,如图1-36那样折叠,使两个锐角顶点A、B重合,若DE = DC, 则A = °. 2、已知:如图,ABC的外角CBDT和BCE的角平分线相交于点F.ABCFDE求证:点F在DAE的平分线上. 模块四 小结反思一、本课知识:1、三角形三条角平分线相交于一_,并且这一点到三角形三条_的距离_。二、本课典例: 三、我的困惑:(你一定要认真思考哦!把它写在下面,好吗?)第一章三角形的证明 回顾与思考 【学习目标】1、在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等。2、发展学生的初步的演绎推理能力,进一步掌握综合法的证明方法,提高学生
36、用规范的数学语言表达论证过程的能力。【学习方法】自主探究与合作交流相结合。【学习重难点】重点:通过例题的讲解和课堂练习对所学知识进行复习巩固 难点:本章知识的综合性应用。【学习过程】模块一 复习反馈1、等腰三角形的性质:(边) ;(角) ;“三线合一”的内容 。2、等边三角形的性质:(边) ;(角) 。3、判定等腰三角形的方法有:(边) ;(角) 。4、判定等边三角形的方法有:(边) ;(角) 。5、线段垂直平分线的性质定理: 。逆定理: 。三角形的垂直平分线性质: 。6、角的性质定理: 。逆定理: 。三角形的角平分线性质: 。7、三角形全等的判定方法有: 。8、30°锐角的直角三角
37、形的性质: 。9、方法总结:(1)证明线段相等的方法:1)可证明它们所在的两个三角形全等;2)角平分线的性质定理:角平分线上的点到角两边的距离相等;3)等角对等边;4)等腰三角形三线合一的性质;5)中垂线的性质定理:线段垂直平分线上的点到线段两端点的距离相等。(2)证明两角相等的方法:1)同角的余角相等;2)平行线性质;3)对顶角相等;4)全等三角形对应角相等;5)等边对等角;6)角平分线的性质定理和逆定理。(3)证明垂直的方法:1)证邻补角相等;2)证和已知直角三角形全等;3)利用等腰三角形的三线合一性质;4)勾股定理的逆定理。(4)等腰三角形的证明:主要用等腰三角形的两腰相等,两底角相等和
38、三线合一性质解题。模块二 合作探究1、填空:(1)ABC中,ABC=123,最小边BC=4 cm,最长边AB= 。(2)直角三角形两直角边分别是5 cm、12 cm,其斜边上的高是 。(3)若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形是 三角形。(4)三角形三边分别为a、b、c,且a2bc=a(bc),则这个三角形(按边分类)一定是_2、已知:如图,D是ABC的BC边上的中点,DEAC,DFAB,垂足分别是E、F,且DE=DF。 求证:ABC是等腰三角形。3、如图,在ABC中,AB=AC,AB的垂直平分线交AC于点E,已知BCE的周长为8,ACBC=2. 求AB与BC的长.4
39、、已知,在ABC中,AD垂直平分BC,且CA = CE,点B、D、C、E在同一条直线上。求证: AB + DB = DE模块三 形成提升1、等腰三角形的底角为15°,腰上的高为16,那么腰长为_ _2、如图1,在ABC中,已知AC=27,AB的垂直平分线交AB于点D,交AC于点E,BCE的周长等于50,则BC的长为 。3、如图2,在ABC中,ACB=90°,BE平分ABC,EDAB于D,如果AC=3 cm,那么AE+DE等于 。图24、 命题“直角三角形斜边上的中线等于斜边的一半”,其逆命题是_.它是一个_命题。等腰三角形两腰上的高相等,这个命题的逆命题是_,这个逆命题是_
40、命题.5、如图,AC平分BAD,CEAB,CFAF,E、F是垂足,且BC = CD。求证:(1)BCEDCF; (2)DF = EB。模块四 小结反思一、本课知识:二、本课典例: 三、我的困惑:(你一定要认真思考哦!把它写在下面,好吗?)第二章 一元一次不等式和一元一次不等式组 §2.1 不等关系 学习目标: 1.理解不等式的意义. 2.能根据条件列出不等式. 3.通过列不等式,训练学生的分析判断能力和逻辑推理能力. 4.通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣. 1.不等式的概念:一般地,用符号“”(或),“”(或)连接的式子叫做_ 2.长度是L的绳子围成一个面积不小于100的圆,绳长L应满足的关系式为_例1、用不等式表示(1)a是正数; (2)a是负数; (3)a与6的和小于5; (4)x与2的差小于1; (5)x的4倍大于7; (6)y的一半小于3.变式训练:1、 用适当的符号表示下列关系: (1) a是非负数;(2) 直角三角形斜边c比它的两直角边a、b都长;(3) X与17的和比它的5倍小。收获与感悟 2.(1)当x=2时,不等式x+34成立吗?(2)当x=1.5时,成立吗? (3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《创业有方信用无价》课件
- 2024年度民间抵押借款标准合同范本:现代农业科技研发贷款3篇
- 2024年度消防通道设施建设及维护管理合同3篇
- 体育馆保安保洁服务合同
- 建筑施工柴油发电机租赁合同
- 美术教室木地板施工服务协议
- 室内铺装工程合同范本
- 2025信息公司增资扩股合同
- 物业托管协议样本
- 2024年某航空公司与机场2024年航班起降服务合同
- (高清版)JTGT 3610-2019 公路路基施工技术规范
- 2023国家开放大学《经济学基础》形考任务1-4参考答案
- 国开2023春《学前儿童语言教育》活动指导形成性考核一二三四参考答案
- 路基排水沟边沟水力计算书
- 切割钢丝,帘线湿拉
- 勘察项目服务计划方案
- 梁祝小提琴谱
- 法士特变速箱常用配件目录明细
- 膝痹病(膝关节骨性关节炎)中医临床路径
- 电力电子技术课程设计
- 匹克球技术水平分级指南
评论
0/150
提交评论