版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上二面角及立体几何课后习题1. 已知:如图2,四面体V-ABC中,VA=VB=VC=a,AB=BC=CA=b,VH面ABC,垂足为H,求侧面与底面所成的角的大小。2.矩形ABCD,AB=3,BC=4,沿对角线BD把ABD折起,使点A在平面BCD上的射影A落在BC上,求二面角A-BD-C的大小的余弦值3在正方体ABCD-A1B1C1D1中,棱长为2,E为BC的中点,求面B1D1E与面BB1C1C所成 的二面角的大小的正切值4在正方体ABCD-A1B1C1D1中,E是BC的中点,F在AA1上,且A1FFA=12,求平面B1EF与底面A1C1所成的二面角大小的正切值
2、5. 已知:如图12,P是正方形ABCD所在平面外一点,PA=PB=PC=PD=a,AB=a求:平面APB与平面CPD相交所成较大的二面角的余弦值 6.120°二面角-l-内有一点P,若P到两个面,的距离分别为3和1,求P到l的距离 7.正方体ABCD-A1B1C1D1中,求以BD1为棱,B1BD1与C1BD1为面的二面角的度数8正方体ABCD-A1B1C1D1中,M为C1D1中点(1)求证:AC1平面A1BD(2)求BM与平面A1BD成的角的正切值9如图,把等腰直角三角形ABC以斜边AB为轴旋转,使C点移动的距离等于AC时停止,并记为点P (1)求证:面ABP面ABC;(
3、2)求二面角C-BP-A的余弦值10如图所示,在正三棱柱中,截面侧面(1)求证:;(2)若,求平面与平面所成二面角(锐角)的度数4、如图,四边形是圆柱的轴截面,点在圆柱的底面圆周上,是的中点,圆柱的底面圆的半径,侧面积为,(1)求证:;(2)求二面角的平面角的余弦值答案:8解: (1)连AC,C1C平面ABCD, C1CBD又ACBD, AC1BD同理AC1A1B A1BBD=BAC1平面A1BD(2)设正方体的棱长为,连AD1,AD1交A1D于E,连结ME,在D1AC1中,MEAC1,AC1平面A1BDME平面A1BD 连结BE,则MBE为BM与平面A1BD成的角在中, ,答案9证明(1)&
4、#160; 由题设知APCPBP 点P在面ABC的射影D应是ABC的外心,即DABPDAB,PD面ABP,由面面垂直的判定定理知,面ABP面ABC(2)解法1 取PB中点E,连结CE、DE、CD BCP为正三角形,CEBDBOD为等腰直角三角形,DEPBCED为二面角C-BP-A的平面角又由(1)知,面ABP面ABC,DCAB,AB面ABP面ABC,由面面垂直性质定理,得DC面ABPDCDE因此CDE为直角三角形设,则,答案10(1)证明:在截面A1EC内,过E作EGAC,G是垂足,如图,面AEC面AC,EG侧面AC取AC的中点F,分别连结BF和FC,由ABBC得BFAC面ABC侧面AC,BF侧面AC,得BFEGBF和EG确定一个平面,交侧面AC于FGBE侧面AC,BEFG,四边形BEGF是 ,BEFGBEAA,FGAA,AACFGC解:(2)分别延长CE和C1B1交于点D,连结ADBACBCA60°,DACDABBAC90°,即 DAACCC面ACB,由三垂线定理得DAAC,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云服务提供商安全合规性-洞察分析
- 牙周植物菌与免疫调节-洞察分析
- 添加剂在食品工业中的应用策略-洞察分析
- 源码克隆与相似性分析-洞察分析
- 药物经济学评价-第1篇-洞察分析
- 学习效果量化评估方法-洞察分析
- 网络棋牌游戏安全防护-洞察分析
- 单位给单位的感谢信范文(8篇)
- 洗涤设备共享经济案例分析-洞察分析
- 医疗器械采购合同三篇
- 2025蛇年春节春联对联带横批(276副)
- 中国PHM系统行业投资方向及市场空间预测报告(智研咨询发布)
- 2024质量管理复习题
- 2025年中学德育工作计划
- 2024年专业会务服务供应与采购协议版B版
- 《数字通信原理》习题答案(全)
- 中国上市公司ESG行动报告
- 早产临床防治指南(2024版)解读
- 《电子烟知识培训》课件
- GB/T 30661.10-2024轮椅车座椅第10部分:体位支撑装置的阻燃性要求和试验方法
- 全套教学课件《工程伦理学》
评论
0/150
提交评论