测量平差课程设计报告_第1页
测量平差课程设计报告_第2页
测量平差课程设计报告_第3页
测量平差课程设计报告_第4页
测量平差课程设计报告_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.土木建筑学院测绘工程专业测量平差基础课程设计报告 设计名称: 姓 名 : 专业班级: 学 号: 指导老师: 时 间: 目 录第一部分 实习概述11.1课程设计名称及目的11.2课程设计要求1第二部分 控制测量技术要求22.1高程控制的技术要求22.2平面控制的技术要求2第三部分 控制网概况33.1测区概况3第四部分 条件平差44.1条件平差公式汇编44.2水准网条件平差64.3 平面控制网条件平差8第五部分 间接平差145.1间接平差公式汇编145.2水准网间接平差145.2平面控制网间接平差19第六部分 精度评定及误差椭圆256.1高程间接平差的精度评定256.2平面间接平差的精度评定25

2、6.3平面间接平差的误差椭圆25第七部分 技术总结29第八部分 实习心得30;第一部分 实验概述1.1 课程设计名称及目的1、 课程设计名称 测量平差基础课程设计2、 课程设计目的 通过控制外业测量工作的数据,应用误差理论与测量平差基础课程所学的知识对数据进行处理,通过数据处理理解测量平差的两个基本任务:(1)、对带有观测误差的观测值,列出误差方程,求出改正数,求出未知量的最可靠值;(2)、对测量成果进行精度评定。通过平差课程设计进一步掌握平差的函数模型和随机模型的建立,掌握测量平差最常用的两种基础方法:条件平差和间接平差,并对间接平差的成果进行评定精度。1.2课程设计要求1.课程设计要求:

3、(1)、控制网概况及测量数据的整理和检验;(2)、列出条件平差和间接平差的函数模型并进行线形化,将线形化后的系数阵和常数向量列表;(3)、采用条件平差和间接平差的方法求控制点的坐标平差值;(4)、对控制点的坐标平差值进行精度评定,求出各点的点位中误差;对水准测量求各点高程平差值的高程中误差(只对间接平差要求,条件平差可不做);(5)、对平面控制网间接平差法计算的点位,计算并绘制点位误差椭圆;(6)、技术总结(或技术报告);(7)、个人实习小结。第二部分 控制测量技术要求2.1高程控制的技术要求1.水准测量的主要技术要求:等级每千米高差全中误差(mm)闭合差(mm)往返各一次二等±22

4、.平差前计算每千米水准测量高差全中误差:高差全中误差(mm); W 闭合差; L 计算W时,相应的路线长度(km); N 符合路线或闭合路线环的个数。3.若进行往返观测,计算每千米水准测量的高差偶然中误差: 高差偶然中误差(); 水准路线往、返高差不符值(); L水准路线的测段长度; n往、返测的水准路线测段数。 (二等要求)2.2平面控制的技术要求1.光电测距导线的主要技术要求:等级闭合或符合导线全长(km)平均边长(m)测距中误差(mm)测角中误差()全长相对闭合差二级2.4200±15±81/100002.测距中误差计算:测距单位权中误差:单位权中误差;各边往、返测距

5、离较差;测距的边数;各边距离测量的先验权;测距先验中误差,根据测距仪的标称精度估算。任一边的实测距离中误差估值:注:宾得全站仪测距标称精度为±(2MM+2PPM),因距离较短,影响测距精度的主要是固定误差,故可以认为各边为等精度观测,即可取均相等,求出的单位权中误差即可求出各边的测距中误差。3.测角中误差的计算:符合导线或闭合导线环的方位角闭合差;计算时的测站数;N的个数。如控制为单一的闭合或符合导线,N为1。第三部分 控制网概况测区概况1、 测区环境叙述本测区位于重庆市江津区重庆交通大学双福校区,覆盖德园小区所有宿舍楼和A01教学楼以及B01语音计算机楼,学生德园服务中心等。整个测

6、区人流量大,气候炎热潮湿,再者由于其他专业测量实习也在进行,很多测站的测量工作都受到不同程度的影响。本测区中水准网已知点B的=385.2968m,=53133.6128m,=39316.7467m 。导线网已知点B的高程坐标以及C的=386.7212m,=83384.6910m,=39397.0260m 。2、 测区概况图 第4部分 条件平差4.1条件平差公式汇编条件平差的函数模型为: 或 条件平差的随机模型: 条件方程: 法方程: 法方程的解: 改正数方程: 观测量平差值: 4.2水准网条件平差外业高差观测数据及其初步处理闭合环一高差及水准距离表格路线号观测高差路线长度方位角 º

7、' " 备 注AB 1-0.562161.473288 24 130.003H=385.2968BC 21.435263.584 17 43 52CD 32.960170.617 31 14 2DE 42.072161.181 44 11 45EF 51.336108.361 138 32 8FG 6-0.187111.698 162 7 31 GH 7-3.756124.967 198 1 10 HI 8-2.576151.589 225 46 38IA 9-0.719174.935209 50 29闭合环二高差及水准距离表格路线号观测高差路线长度方位角º 

8、9; " 备 注BC 101.435263.58417 43 52 0.012H=385.2968CD 112.960170.61731 14 2 DE 122.072161.18144 11 45E-CH5 130.471136.333324 53 28CH5-CH4 14-4.860171.754227 17 37CH4-CH3 15-0.356189.328211 17 35CH3-CH2 16-0.907121.741195 49 49CH2-CH1 17-1.226218.272188 34 28CH1-B 180.42388.25897 39 27条件方程定权并组成法方程

9、: Q= Q=由条件方程得系数矩阵A= A= W=3 W=12根据N=AQA=APA得N=9 N=9由此组成法方程NK+W=0得9k+3=0 9k+12=0解法方程得k=1/3 k=4/3计算改正数和平差值,利用改正数方程和得: V = = V = = = L+V = = L+V = 条件平差后各点的高程(已知点B的高程:385.2968)点号ABCDEFGHI高程385.8591385.2968386.7315389.6911391.7628393.0984392.9111389.1547386.5784点号BCDECH5CH4CH3CH2CH1高程385.2968386.7304389.6

10、891391.7598392.2295387.3681387.0107386.1024384.87504.3 平面控制网条件平差1.、外业角度距离坐标观测数据及其初步处理 条件平差方程 闭合环一坐标计算表闭合环二坐标计算表条件平差方程定权并组成法方程取=10",则。测角中误差P=Q= W = 由此组成法方程,则改正数 K= = =第五部分 间接平差5.1间接平差公式汇编间接平差的函数模型为: 或 间接平差的随机模型: 条件方程: 法方程: 法方程的解: 观测量和参数的平差值: ,单位权中误差: 平差参数的协方差阵: 5.2水准网间接平差1、 水准网一共有13个待定点高程,高差观测值个

11、数n=15,必要观测t=13,多余观测r=2,选取13个待定点高程为参数,其中参数的近似值如下:CDEFGHIA386.7318389.6918391.7638393.0998392.9128389.1568386.5808385.8618CH5CH4CH3CH2CH1392.2348387.3748387.0188386.1118384.88582、误差方程X1X2X3X4X5X6X7X8X9X10X11X12X13X14常数项V110V2-110V3-110V4-110V5-110V6-110V7-110V8-113V9-10V10-110V11-110V12-110V13-110V14-

12、110V15-112定权并组成法方程 P = 由误差方程可得矩阵B和QQ=P=B = B= = 由此组成法方程,并解算法方程得参数改正数和参数平差值。W=BTQ-1 l=*=0 = = * = 计算改正数和观测值的平差值。由和得:3、间接平差后各点的高程:CDEFGHIA386.7318389.6918391.7638393.0998392.9131389.1556386.5820385.8618CH5CH4CH3CH2CH1392.2348387.3748387.0200386.1082384.88705.2平面控制网间接平差1、平面控制网中有13个待定点,高差观测值个数15,必要观测数t=

13、26,多余观测r=9,选取13个待定点的X,Y为参数。其中起算数据和参数近似值如下:点号坐标边长方位角º ' "XYB53133.612839316.7467263.58417 43 52C53384.691039397.02602、定权并组成法方程。以测角中误差为导线网平差中的单位全观测值中误差,则,。即:误差方程的参数计算表路线号(秒、cm)(秒、cm)(秒、cm)(秒、cm)AB153.215-50.97826073-1.210.40BC80.275251.06369476-2.47.45CD88.471145.88729104-6.2710.33DE112.

14、361115.561259798.92-9.18-8.929.18EF71.752-81.2021174112.6-14.27-12.614.27FG34.282-106.30612476-5.67-17.585.6717.58GH-38.657-118.83815616-5.115.705.1-15.70HI-108.633-105.72622979-9.759.499.75-9.49IA-87.048-151.56130602-5.8710.215.87-10.21E-CH5-78.409111.52918586-8.7-12.378.712.37CH5-CH4-126.211116.49

15、129499-8.82-8.158.828.15CH4-CH3-101.447-98.34135845-5.845.665.84-5.66CH3-CH2-33.209-117.12414821-4.6216.34.62-16.3CH2-CH1-32.543-215.83247643-1.419.341.41-9.34CH1-B87.471-11.76778923.163.11-23.16-3.11误差方程改正数系数列表路线(dm)AB-50.978153.215161.4730.826-0.94915.43BC251.06380.275263.5840.9520.3041.63CD145.88

16、788.471170.6170.8560.5180DE115.561112.361161.181-0.718-0.6970.7180.6970EF-81.20271.752108.3610.749-0.662-0.7490.6620FG-106.30634.282111.6980.952-0.307-0.9520.3070GH-118.838-38.657124.9670.9510.309-0.951-0.3090HI-105.726-108.633151.5890.6970.717-0.697-0.7170IA-151.561-87.048174.9350.8660.498-0.866-0.

17、4980E-CH5111.529-78.409136.333-0.8180.5750.818-0.5750CH5-CH4116.491-126.211171.754-0.6780.7350.678-0.7350CH4-CH3-98.341-101.447189.3280.5360.519-0.536-0.5190CH3-CH2-117.124-33.209121.7410.9620.273-0.962-0.2730CH2-CH1-215.832-32.543218.2720.9880.149-0.988-0.1490CH1-B-11.7687.47188.2580.133-0.991-0.13

18、30.99127.9角11.21-0.40000000000000000000000001.251200-6.310.30000000000000000000002.4013002.65-1.15-8.929.180000000000000000000001400003.68-5.09-12.614.270000000000000000000150000006.84-3.315.6717.580000000000000000016000000000-6.93-1.885.1-15.7000000000000000170000000000-4.08-6.219.75000000000000001

19、80000000000003.880.725.87-1.020000000000019000000000000002.832.168.712.3700000000011000000000000000000.12-4.22.8.828.1500000001110000000000000000002.98-2.495.84-5.660000011200000000000000000000010.644.62-16.30001130000000000000000000000-0.606.961.41-9.3401140000000000000000000000002.4-7.4501边10.826-

20、0.9500000000000000000000000015.422000.8560.51800000000000000000000001.632300000.8560.518000000000000000000000240000-0.72-0.690.7180.6970000000000000000000250000000.749-0.66-0.740.6620000000000000000026000000000.952-0.31-0.950.3070000000000000002700000000000.6970.717-0.69-0.72000000000000028000000000

21、0000.8660.498-0.86-0.49000000000002900000000000000-0.820.5750.818-0.570000000002100000000000000000-0.680.7350.678-0.730000000211000000000000000000.5360.519-0.54-0.5200000212000000000000000000000.9620.273-0.97-0.2800021300000000000000000000000.9880.149-0.98-0.150214000000000000000000000000.133-0.9927

22、.92误差方程算得改正数: 平差后数值: 第六部分 精度评定及误差椭圆6.1高程间接平差的精度评定1、水准网的单位权中误差2、待定点高程中误差 由Nbb-1中可得未知数的协因数(见间接平差) 点位中误差=6.2平面间接平差的精度评定1、平面控制网的单位权中误差2、待定点坐标中误差6.3平面间接平差的误差椭圆1、 误差椭圆中E、F、的求解方法: 2、 每个未知点的互协因数阵()3、相应误差椭圆中E、F参数4、误差椭圆的绘制图 第七部分 技术总结1. 高程网的技术鉴定实习高程测量为单向观测,每个测站为2个测回,三个环的闭合差分别为W1=2mm,W2=12mm。根据技术要求闭合差W0闭合环一满足要求

23、。2.平面控制网的技术鉴定闭合导线网中技术要求测角中误差m±8",实习测量得到方位角闭合差发f1=12,f2=22则测角中误差, m>8"则角度测量满足精度要求。3.平差后的技术鉴定 高程网的单位权中误差为0=0.102mm,满足平差精度要求。 平面控制网的单位权中误差为0=8.74,小于10同样满足平差精度要求。第八部分 实习心得通过本次误差理论与测量平差基础的课程设计实习,我学会了很多东西。特别是把在平时学习理论课中遇到的很多问题和盲点都搞清楚了,比如说导线网的条件平差方程的列法,间接平差方程的建立等。同时自己也和庞大的数据打了一回交到,我不在像从前那样畏惧那些庞大的数据了。尤其是在平面控制网的间接平差方程的成功建立和求解,更是让我信心倍增。说实话,这次的课程设计过程的确很辛苦,连着好几天每天都要处理数据,特别是临近期末,除了要处理数据之外还要面对多门考试,经过自己的不懈努力,抓紧时间做和复习。我既没有落下课程设计,同时也没有耽误考试。这次的成功我不仅要好好表扬自己,同时我还要感谢我的老师,我的同学。他们给了我不少的帮

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论