版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高等数学公式导数公式:基本积分表:三角函数的有理式积分:1 / 18一些初等函数: 两个重要极限:三角函数公式:·诱导公式: 函数角Asincostgctg-sincos-tg-ctg90°-cossinctgtg90°+cos-sin-ctg-tg180°-sin-cos-tg-ctg180°+-sin-costgctg270°-cos-sinctgtg270°+-cossin-ctg-tg360°-sincos-tg-ctg360°+sincostgctg·和差角公式: ·和差化积
2、公式:·倍角公式:·半角公式:·正弦定理: ·余弦定理: ·反三角函数性质:高阶导数公式莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微
3、分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程五类基本初等函数及图形- (1) 幂函数-1. 当u为正整数时,函数的定义域为区间,他们的图形都经过原点,并当u>1时在原点处与X轴相切。且u为奇数时,图形关于原点对称;u为偶数时图形关于Y轴对称;2. 当u为负整数时。函数的定义域为除去x=0的所有实数。3. 当u为正有理数m/n时,n为偶数时函数的定义域为(0, +),n为奇数时函数的定义域为(-+)。函数的图形均经过原点和(1 ,1).如果m>
4、;n图形于x轴相切,如果m<n,图形于y轴相切,且m为偶数时,还跟y轴对称;m,n均为奇数时,跟原点对称.4. 当u为负有理数时,n为偶数时,函数的定义域为大于零的一切实数;n为奇数时,定义域为去除x=0以外的一切实数. ,是常数; - (2) 指数函数 - (是常数且),;1. 当a>1时函数为单调增,当a<1时函数为单调减.2. 不论x为何值,y总是正的,图形在x轴上方.3. 当x=0时,y=1,所以他的图形通过(0,1)点. - (3) 对数函数 - (是常数且),;1. 他的图形为于y轴的右方.并通过点(1,0)2. 当a>1时在区间(0,1),y的值为负.图形位于x的下方,在区间(1, +),y值为正,图形位于x轴上方.在定义域是单调增函数.a<1在实用中很少用到. - (4) 三角函数 - 正弦 , 余弦 , 正切 , 余切 , - (5) 反三角函数 -反余弦,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学综合练习试卷B卷附答案
- 2024年度山西省高校教师资格证之高等教育法规押题练习试题B卷含答案
- 重庆市西南大学附中2024-2025学年高一上定时检测(一)语文试题含答案
- 2024年度xx村监测对象风险消除民主评议会议记录
- 湖南省长沙市长郡郡维中学2022-2023学年九年级上学期入学英语试卷(含答案)
- 2024年长沙市事业单位招聘计算机岗位专业知识试题
- 2024年培训学校业务外包协议
- 2024年工程咨询服务具体协议样式
- 2024医疗销售企业合作协议样本
- 2024房屋建筑施工劳务协议详例
- 部编版五年级上册道德与法治第三单元知识点归纳整理
- 养老机构(养老院)全套服务管理实用手册
- 企业文化管理第八章企业文化的比较与借鉴
- WST311-2023《医院隔离技术标准》
- 《缕书香伴我同行》课件
- 建设项目竣工环境保护验收管理办法
- 100道解方程 计算题
- 赛事承办服务投标方案(技术方案)
- 概率论(华南农业大学)智慧树知到课后章节答案2023年下华南农业大学
- 上海中考英语专项练习-动词的时态-练习卷一和参考答案
- GB 4806.7-2023食品安全国家标准食品接触用塑料材料及制品
评论
0/150
提交评论