下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、§ 4 导数的四则运算法则、教学目标:1 .知识与技能掌握有限个函数的和、差、积、商的求导公式;熟练运用公式求基本初等函数的四则运算的导数,能运用导数的几何意义,求过曲线上一点的切线。2 .过程与方法通过用定义法求函数 f (x) =x+x2的导数,观察结果,发掘两个函数的和、差求导方法,给 结合定义给出证明;由定义法求 f(x)=x 2g(x)的导数,发现函数乘积的导数,归纳出两个函 数积、商的求导发则。3 .情感、态度与价值观培养学生由特别到一般的思维方法去探索结论,培养学生实验一一观察一一归纳一一抽象的数学思维方法。二、教学重点:函数和、差、积、商导数公式的发掘与应用教学难点:
2、导数四则运算法则的证明三、教学方法:探析归纳,讲练结合 四、教学过程(一)、复习:导函数的概念和导数公式表。1 .导数的定义:设函数 y f (x)在x x0处附近有定义,如果x 0时,y与 x的比上(也叫函数的平均变化率)有极限即无限趋近于某个常数,我们把这个极限值叫做xx函数y f (x)在xx0处的导数,记作 y/ x % ,即f/(x0) lim上(&x)-f立x 0x2 .导数的几何意义:是曲线 y f (x)上点(x°, f (x°)处的切线的斜率.因此,如果y f (x)在点x0可导,则曲线y f (x)在点(x0, f (x0)处的切线方程为y f(
3、x0)f7x0)(x x°).3 .导函数(导数):如果函数y f (x)在开区间(a,b)内的每点处都有导数,此时对于每一个x (a,b),都对应着一个确定的导数fix),从而构成了一个新的函数f/(x),称这个函数f lx)为函数y f (x)在开区间内的导函数,简称导数,4 .求函数yf(x)的导数的一般方法:(1)求函数的改变量 yf (xx) f(x). (2)求平均变化率_y xf(x x)f(x)(3)取极限,得导数 y/ =f (x)5.常见函数的导数公式:C'0; (xn)' nxn(二)、探析新课两个函数和(差)的导数等于这两个函数导数的和(差)f
4、 (x) g(x) f (x) g (x)f(x)g(x)f (x) g(x)y u(xx)v(x x)u(x)v(x)u(xx)u(x) v(xx)v(x) u v,.、-uv . y,lim limu vuvlimlimxxx x 0 xx 0x x x 0 x x 0 x即 u(x)''v( x) u (x)'v (x).f (x) u(x) v(x),证明:令y例1:求下列函数的导数:解:2 x(1) y x 2 ;(2)lnx;(3)(x21)(x1);(4)(1) y(x2 2x)(x2)(2x) 2x2xln2(2)lnx)(.x)(lnx)(x21)(x
5、 1)(x31)(x3)(x2)(x)(1)3x22x(x2)(x1)(x2)2x 3 x(3) 2x2x31.、 一一例2:求曲线y x3 上点(1, 0)处的切线方程。X解:y x3 1 x31xx将x 1代入导函数得rr ,、31即曲线y x 上点(1 , x3x2-2ox 1,3 14 o10)处的切线斜率为4,从而其切线方程为y 0 4(x 1),即 y 4x 4。设函数y2. .f (x)在x0处的导数为f (xo) , g(x) x o我们来求y-2 -f(x)g(x) x f(x)在x0处的导数。y (x°x)2f(x0x) x2f(x。)xx222(x°x
6、) f(x0x)f(x。)(% x) x f(x0)x(x0x)2 f(x0x)f(x0)(x0x)2x2 f (x。)xx令 x 0,由于lim°(x0x)2 xlimBx 0x)f(x0)f (x0)limx(x022x)x0x2x°知 y f (x)g(x)x2 f(x)在 x0处的导数值为 x2f (x0) 2x0f(x0)。因此 y f (x)g(x) x2f(x)的导数为 x2 f (x) (x2) f(x)。般地,若两个函数 f (x)和g(x)的导数分别是f (x)和g (x),我们有f (x)g(x) f (x)g(x) f (x)g(x)f (x) f
7、(x)g(x) f(x)g(x)g(x)g2(x)特别地,当g(x) k时,有例3:求下列函数的导数:(1)(2) y“sin x ;(3) y xln x。解:(1)(x2ex)(x2)2 x、 x (e )2xex x(2x x2)ex;(2)( xsin x) ( . x) sin x - x(sin x)sin x2.xx x cosx ;(3)(xln x)(x) In x x(ln x)1 In xIn x 1。(1)In x解:(1)sin x(sin x) x sin x(x)cosxsin x 1xcosx sin x2;x(2 ) y2 xln x(x22)ln x x (
8、ln x) (ln x)22x,2ln x xln2 xx(2lnx 1)ln 2 x(三)、练习:课本P44练习:1、2.课本P46练习1.(四)课堂小结:本课要求:1、了解两个函数的和、差、积、商的求导公式;2、会运用上述公式,求含有和、差、积、商综合运算的函数的导数;3、能运用导数的几何意义,求过例4:求下列函数的导数:sin x;x曲线上一点的切线。f (x) g(x)f (x) g(x)f (x)g(x) f (x) g (x)f(x)g(x)(x)g(x)f(x)g(x)f(x)g(x)f (x)g(x) f(x)g (x)g2(x)(五)、作业:课本P47习题2-4 : A 组 2、3 B 组五、教后反思:本节课成功之点:(1) 从特殊函数出发,利用已学过的导数定义来求f (x) =x+x2的导数,观察结果,发掘两个函数的和、差求导方法,给结合定义给出证明(2) 由定义法求f(x)=x 2g(x)的导数,发现函数乘积的导数,归纳出两个函数积、 商的求 导发则。(3) 通过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 9445-2024无损检测人员资格鉴定与认证
- 保证保险行业经营分析报告
- 个人背景调查行业市场调研分析报告
- 玩具箱家具市场分析及投资价值研究报告
- 衬裙项目运营指导方案
- 自行车脚踏车轮圈市场分析及投资价值研究报告
- 回热式换热器产品供应链分析
- 空白盒式录像带产品供应链分析
- 公共关系传播策略咨询行业经营分析报告
- 医疗设备租赁行业经营分析报告
- 东北黑土地保护利用“北安模式”及推广建议
- 北师大版八年级上学期期中考试数学试卷带答案
- 2024简易租房合同下载打印
- 四川省公需科目2024年度数字经济与驱动发展考试题库及答案
- 京瓷哲学培训课件
- 住院患者健康教育检查表
- 工程测量部分案例分析
- IMD(模内转印)工艺详解
- HLA-LJ-185混流式水轮机导水机构安装作业指导书2
- 绿化工程竣工资料(全套)
- 中班语言:我眼中的秋天
评论
0/150
提交评论