离散数学屈婉玲课后习题_第1页
离散数学屈婉玲课后习题_第2页
离散数学屈婉玲课后习题_第3页
离散数学屈婉玲课后习题_第4页
离散数学屈婉玲课后习题_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p(qr) 0(01) 0 (2)(pr)(qs) (01)(11) 010. (3)(pqr)(pqr) (111) (000)0(4)(rs)(pq) (01)(10) 00117判断下面一段论述是否为真:“是无理数。并且,如果3是无理数,则也是无理数。另外6能被2整除,6才能被4整除。”答:p: 是无理数 1 q: 3是无理数 0 r: 是无理数 1 s:6能被2整除 1t: 6能被4整除 0 命题符号化为: p(qr)(ts)的真值为1,所以这一段的论述为真。19用真值表判断下列公式的

2、类型:(4)(pq) (qp)(5)(pr) (pq)(6)(pq) (qr) (pr)答: (4) p q pq q p qp (pq)(qp) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) (pqq) (2)(p(pq)(pr)(3)(pq)(pr)答:(2)(p(pq))(pr)(p(pq)(pr)ppqr1 所

3、以公式类型为永真式(3) P q r pq pr (pq)(pr)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1 所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(pq)(pr)(p(qr)(4)(pq)(pq)(pq) (pq)证明(2)(pq)(pr) (pq)(pr)p(qr)p(qr)(4)(pq)(pq)(p(pq) (q(pq)(pp)(pq)(qp) (qq)1(pq)(pq)1(pq)(pq) 5.求下列公式的主析取范式与主合取范式,并求

4、成真赋值(1)(pq)(qp)(2)(pq)qr(3)(p(qr)(pqr)解:(1)主析取范式(pq)(qp) (pq)(qp) (pq)(qp) (pq)(qp)(qp)(pq)(pq)(pq)(pq)(pq)(0,2,3) 主合取范式: (pq)(qp) (pq)(qp) (pq)(qp) (p(qp)(q(qp) 1(pq) (pq) M1 (1) (2) 主合取范式为: (pq)qr(pq)qr (pq)qr0 所以该式为矛盾式. 主合取范式为(0,1,2,3,4,5,6,7) 矛盾式的主析取范式为 0 (3)主合取范式为:(p(qr)(pqr) (p(qr)(pqr)(p(qr)(

5、pqr)(p(pqr)(qr)(pqr) 11 1 所以该式为永真式. 永真式的主合取范式为 1 主析取范式为(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明: (2)前提:pq,(qr),r结论:p (4)前提:qp,qs,st,tr结论:pq证明:(2)(qr) 前提引入qr 置换qr 蕴含等值式r 前提引入q 拒取式pq 前提引入p(3) 拒取式证明(4):tr 前提引入t 化简律qs 前提引入st 前提引入qt 等价三段论(qt)(tq)  置换(qt) 化简q 假言推理qp 前提引入p 假言推理(11)pq 合取 15

6、在自然推理系统P中用附加前提法证明下面各推理:(1) 前提:p(qr),sp,q结论:sr证明s 附加前提引入sp 前提引入p 假言推理p(qr) 前提引入qr 假言推理q 前提引入r 假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:pq,rq,rs 结论:p证明:p 结论的否定引入pq 前提引入q 假言推理rq 前提引入r 化简律rs 前提引入r 化简律rr 合取由于最后一步rr 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2)

7、 存在x,使得x+5=9.其中(a)个体域为自然数集合. (b)个体域为实数集合.解:F(x): 2=(x+)(x). G(x): x+5=9.(1)在两个个体域中都解释为,在(a)中为假命题,在(b)中为真命题。(2)在两个个体域中都解释为,在(a)(b)中均为真命题。4. 在一阶逻辑中将下列命题符号化:(1) 没有不能表示成分数的有理数.(2) 在北京卖菜的人不全是外地人.解:(1)F(x): x能表示成分数 H(x): x是有理数命题符号化为: (2)F(x): x是北京卖菜的人 H(x): x是外地人命题符号化为: 5. 在一阶逻辑将下列命题符号化: (1) 火车都比轮船快. (3)

8、不存在比所有火车都快的汽车. 解:(1)F(x): x是火车; G(x): x是轮船; H(x,y): x比y快命题符号化为: (2) (1)F(x): x是火车; G(x): x是汽车; H(x,y): x比y快命题符号化为: 9.给定解释I如下: (a) 个体域D为实数集合R. (b) D中特定元素=0. (c) 特定函数(x,y)=xy,x,y. (d) 特定谓词(x,y):x=y,(x,y):x<y,x,y. 说明下列公式在I下的含义,并指出各公式的真值:答:(1) 对于任意两个实数x,y,如果x<y, 那么xy. 真值1.(2) 对于任意两个实数x,y,如果x-y=0,

9、那么x<y. 真值0.10. 给定解释I如下: (a) 个体域D=N(N为自然数集合). (b) D中特定元素=2. (c) D上函数=x+y,(x,y)=xy. (d) D上谓词(x,y):x=y.说明下列各式在I下的含义,并讨论其真值.(1) xF(g(x,a),x)(2) xy(F(f(x,a),y)F(f(y,a),x)答:(1) 对于任意自然数x, 都有2x=x, 真值0.(2) 对于任意两个自然数x,y,使得如果x+2=y, 那么y+2=x. 真值0.11. 判断下列各式的类型:(1) (3) yF(x,y).解:(1)因为 为永真式; 所以 为永真式;(3)取解释I个体域为

10、全体实数F(x,y):x+y=5所以,前件为任意实数x存在实数y使x+y=5,前件真;后件为存在实数x对任意实数y都有x+y=5,后件假,此时为假命题再取解释I个体域为自然数N,F(x,y)::x+y=5所以,前件为任意自然数x存在自然数y使x+y=5,前件假。此时为假命题。/错误的吧此公式为非永真式的可满足式。13. 给定下列各公式一个成真的解释,一个成假的解释。(1) (F(x)(2) x(F(x)G(x)H(x)解:(1)个体域:本班同学F(x):x会吃饭, G(x):x会睡觉.成真解释F(x):x是泰安人,G(x):x是济南人.(2)成假解释(2)个体域:泰山学院的学生F(x):x出生

11、在山东,G(x):x出生在北京,H(x):x出生在江苏,成假解释.F(x):x会吃饭,G(x):x会睡觉,H(x):x会呼吸. 成真解释.第六章部分课后习题参考答案5.确定下列命题是否为真:(1) 真 (2) 假(3) 真(4) 真(5)a,ba,b,c,a,b,c 真(6)a,ba,b,c,a,b 真(7)a,ba,b,a,b 真(8)a,ba,b,a,b 假6设a,b,c各不相同,判断下述等式中哪个等式为真:(1)a,b,c,=a,b,c 假(2)a ,b,a=a,b 真(3)a,b=a,b 假(4),a,b=,a,b 假8求下列集合的幂集:(1)a,b,c P(A)= ,a,b,c,a,

12、b,a,c,b,c,a,b,c(2)1,2,3 P(A)= , 1, 2,3, 1,2,3 (3) P(A)= , (4), P(A)= , 1, 2,3, 1,2,3 14化简下列集合表达式:(1)(AB)B )-(AB)(2)(ABC)-(BC)A解:(1)(AB)B )-(AB)=(AB)B )(AB)=(AB)(AB))B=B=(2)(ABC)-(BC)A=(ABC)(BC)A=(A(BC)(BC )(BC)A=(A(BC)A=(A(BC)A=A18某班有25个学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。已知6个会打网球的人都

13、会打篮球或排球。求不会打球的人数。解: 阿A=会打篮球的人,B=会打排球的人,C=会打网球的人 |A|=14, |B|=12, |AB|=6,|AC|=5,| ABC|=2, |C|=6,CAB如图所示。25-(5+4+2+3)-5-1=25-14-5-1=5不会打球的人共5人21.设集合A1,2,2,3,1,3,计算下列表达式:(1)A(2)A(3)A(4)A解: (1)A=1,22,31,3=1,2,3,(2)A=1,22,31,3=(3)A=123= (4)A=27、设A,B,C是任意集合,证明(1)(A-B)-C=A- BC(2)(A-B)-C=(A-C)-(B-C)证明(1) (A-

14、B)-C=(AB) C= A( BC)= A(BC) =A- BC(2) (A-C)-(B-C)=(AC) (B C)= (AC) (BC)=(ACB) (ACC)= (ACB) = A(BC) =A- BC 由(1)得证。第七章部分课后习题参考答案7.列出集合A=2,3,4上的恒等关系I A,全域关系EA,小于或等于关系LA,整除关系DA.解:IA =<2,2>,<3,3>,<4,4> EA=<2,2>,<2,3>,<2,4>,<3,4>,<4,4>,<3,2>,<3,3>

15、,<4,2>,<4,3>LA=<2,2>,<2,3>,<2,4>,<3,3>,<3,4>,<4,4>DA=<2,4>13.设A=<1,2>,<2,4>,<3,3> B=<1,3>,<2,4>,<4,2>求AB,AB, domA, domB, dom(AB), ranA, ranB, ran(AB ), fld(A-B).解:AB=<1,2>,<2,4>,<3,3>,<1,3&

16、gt;,<4,2> AB=<2,4>domA=1,2,3 domB=1,2,4 dom(AB)=1,2,3,4ranA=2,3,4 ranB=2,3,4ran(AB)=4A-B=<1,2>,<3,3>,fld(A-B)=1,2,314.设R=<0,1><0,2>,<0,3>,<1,2>,<1,3>,<2,3>求RR, R-1, R0,1, R1,2解:RR=<0,2>,<0,3>,<1,3> R-1,=<1,0>,<2,0

17、>,<3,0>,<2,1>,<3,1>,<3,2>R0,1=<0,1>,<0,2>,<0,3>,<1,2>,<1,3>R1,2=ran(R|1,2)=2,316设A=a,b,c,d,为A上的关系,其中=求。解: R1R2=<a,d>,<a,c>,<a,d> R2R1=<c,d>R12=R1R1=<a,a>,<a,b>,<a,d>R22=R2R2=<b,b>,<c,c>,<

18、;c,d>R23=R2R22=<b,c>,<c,b>,<b,d>36设A=1,2,3,4,在AA上定义二元关系R, <u,v>,<x,y>AA ,u,v> R <x,y>u + y = x + v.(1) 证明R 是AA上的等价关系.(2)确定由R 引起的对AA的划分.(1)证明:<u,v>R<x,y> u+y=x-y<u,v>R<x,y>u-v=x-y<u,v>AAu-v=u-v<u,v>R<u,v>R是自反的任意的<u

19、,v>,<x,y>A×A如果<u,v>R<x,y> ,那么u-v=x-yx-y=u-v <x,y>R<u,v> R是对称的任意的<u,v>,<x,y>,<a,b>A×A若<u,v>R<x,y>,<x,y>R<a,b>则u-v=x-y,x-y=a-bu-v=a-b <u,v>R<a,b>R是传递的R是A×A上的等价关系(2) =<1,1>,<2,2>,<3,3>

20、;,<4,4>, <2,1>,<3,2>,<4,3>, <3,1>,<4,2>,<4,1>, <1,2>,<2,3>,<3,4>, <1,3>,<2,4>, <1,4> 41.设A=1,2,3,4,R为AA上的二元关系, a,b,c,d AA , a,bRc,da + b = c + d(1) 证明R为等价关系.(2) 求R导出的划分.(1)证明:<a,b AA a+b=a+b<a,b>R<a,b> R是自反的

21、任意的<a,b>,<c,d>A×A设<a,b>R<c,d>,则a+b=c+dc+d=a+b <c,d>R<a,b>R是对称的任意的<a,b>,<c,d>,<x,y>A×A若<a,b>R<c,d>,<c,d>R<x,y>则a+b=c+d,c+d=x+ya+b=x+y <a,b>R<x,y>R是传递的R是 A×A上的等价关系(2)=<1,1>, <1,2>,<2

22、,1>, <1,3>,<2,2>,<3,1>, <1,4>,<4,1>,<2,3>,<3,2>, <2,4>,<4,2>,<3,3>, <3,4>,<4,3>, <4,4>43. 对于下列集合与整除关系画出哈斯图:(1) 1,2,3,4,6,8,12,24(2) 1,2,3,4,5,6,7,8,9,10,11,12解: (1) (2)45.下图是两个偏序集<A,R>的哈斯图.分别写出集合A和偏序关系R的集合表达式. (a)

23、 (b)解: (a)A=a,b,c,d,e,f,g R=<a,b>,<a,c>,<a,d>,<a,e>,<a,f>,<a,g>,<b,d>,<b,e>,<c,f>,<c,g> (b) A=a,b,c,d,e,f,gR=<a,b>,<a,c>,<a,d>,<a,e>,<a,f>,<d,f>,<e,f>46.分别画出下列各偏序集<A,R>的哈斯图,并找出A的极大元极小元最大元和最小元.

24、(1)A=a,b,c,d,eR=<a,d>,<a,c>,<a,b>,<a,e>,<b,e>,<c,e>,<d,e>IA.(2)A=a,b,c,d,e, R=<c,d>IA.解: (1) (2)项目 (1) (2)极大元: e a,b,d,e 极小元: a a,b,c,e最大元: e 无最小元: a 无第八章部分课后习题参考答案1 设f :NN,且 f (x)=求f (0), f (0), f (1), f (1), f (0,2,4,6,),f (4,6,8), f -1(3,5,7).解:f (0

25、)=0, f (0)=0, f (1)=1, f (1)=1, f (0,2,4,6,)=N,f (4,6,8)=2,3,4, f -1 (3,5,7)=6,10,14.4. 判断下列函数中哪些是满射的?哪些是单射的?哪些是双射的? (1) f:NN, f(x)=x2+2 不是满射,不是单射 (2) f:NN,f(x)=(x)mod 3,x除以3的余数 不是满射,不是单射 (3) f:NN,f(x)= 不是满射,不是单射 (4) f:N0,1,f(x)= 是满射,不是单射 (5) f:N-0R,f(x)=lgx 不是满射,是单射 (6) f:RR,f(x)=x2-2x-15 不是满射,不是单射

26、5. 设X=a,b,c,d,Y=1,2,3,f=<a,1>,<b,2>,<c,3>,判断以下命题的真假: (1)f是从X到Y的二元关系,但不是从X到Y的函数; 对 (2)f是从X到Y的函数,但不是满射,也不是单射的; 错 (3)f是从X到Y的满射,但不是单射; 错 (4)f是从X到Y的双射. 错第十四章部分课后习题参考答案5、设无向图G有10条边,3度与4度顶点各2个,其余顶点的度数均小于3,问G至少有多少个顶点?在最少顶点的情况下,写出度数列、。解:由握手定理图G的度数之和为:3度与4度顶点各2个,这4个顶点的度数之和为14度。其余顶点的度数共有6度。其余

27、顶点的度数均小于3,欲使G的顶点最少,其余顶点的度数应都取2,所以,G至少有7个顶点, 出度数列为3,3,4,4,2,2,2,.7、设有向图D的度数列为2,3,2,3,出度列为1,2,1,1,求D的入度列,并求,,.解:D的度数列为2,3,2,3,出度列为1,2,1,1,D的入度列为1,1,1,2.,8、设无向图中有6条边,3度与5度顶点各1个,其余顶点都是2度点,问该图有多少个顶点?解:由握手定理图G的度数之和为:设2度点个,则,该图有4个顶点.14、下面给出的两个正整数数列中哪个是可图化的?对可图化的数列,试给出3种非同构的无向图,其中至少有两个时简单图。(1) 2,2,3,3,4,4,5

28、 (2) 2,2,2,2,3,3,4,4解:(1) 2+2+3+3+4+4+5=23 是奇数,不可图化;(2) 22+2+2+3+3+4+4=16, 是偶数,可图化;18、设有3个4阶4条边的无向简单图G1、G2、G3,证明它们至少有两个是同构的。证明:4阶4条边的无向简单图的顶点的最大度数为3,度数之和为8,因而度数列为2,2,2,2;3,2,2,1;3,3,1,1。但3,3,1,1对应的图不是简单图。所以从同构的观点看,4阶4条边的无向简单图只有两个:所以,G1、G2、G3至少有两个是同构的。20、已知n阶无向简单图G有m条边,试求G的补图的边数。解:21、无向图G如下图(1)求G的全部点

29、割集与边割集,指出其中的割点和桥;(2) 求G的点连通度与边连通度。解:点割集: a,b,(d)边割集e2,e3,e3,e4,e1,e2,e1,e4e1,e3,e2,e4,e5=123、求G的点连通度、边连通度与最小度数。解:、 、28、设n阶无向简单图为3-正则图,且边数m与n满足2n-3=m问这样的无向图有几种非同构的情况?解: 得n=6,m=9.31、设图G和它的部图的边数分别为和,试确定G的阶数。解: 得45、有向图D如图 (1)求到长度为1,2,3,4的通路数;(2)求到长度为1,2,3,4的回路数;(3)求D中长度为4的通路数;(4)求D中长度小于或等于4的回路数;(5)写出D的可

30、达矩阵。解:有向图D的邻接矩阵为:,(1)到长度为1,2,3,4的通路数为0,2,0,0;(2)到长度为1,2,3,4的回路数为0,0,4,0;(3)D中长度为4的通路数为32;(4)D中长度小于或等于4的回路数10;(4)出D的可达矩阵第十六章部分课后习题参考答案1、画出所有5阶和7阶非同构的无向树.2、一棵无向树T有5片树叶,3个2度分支点,其余的分支点都是3度顶点,问T有几个顶点?解:设3度分支点个,则 ,解得T有11个顶点3、无向树T有8个树叶,2个3度分支点,其余的分支点都是4度顶点,问T有几个4度分支点?根据T的度数列,请至少画出4棵非同构的无向树。解:设4度分支点个,则 ,解得4、棵无向树T有 (i=2,3,k)个i度分支点,其余顶点都是树叶,问T应该有几片树叶?解:设树叶片,则 ,解得评论:2,3,4题都是用了两个结论,一是握手定理,二是5、n(n3)阶无向树T的最大度至少为几?最多为几?解:2,n-16、若n(n3)阶无向树T的最大度 =2,问T中最长的路径长度为几?解:n-17、证明:n(n2) 阶无向树不是欧拉图.证明:无向树没有回路,因而不是欧拉图。8、证明:n(n2) 阶无向树不是哈密顿图.证明:无向树没有回路,因而不是哈密顿图。9、证明:任何无向树T都是二部图.证明:无向树没有回路,因而不存在技术长度的圈,是二部图。10、什么样的无向树T既是欧

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论