版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章综合能力检测时间120分钟,满分150分。一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1ABC中,sinAsinB是AB的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件答案C解析ABC中,sinAsinBAB.2如果命题“綈(p或q)”为假命题,则()Ap、q均为真命题Bp、q均为假命题Cp、q中至少有一个为真命题Dp、q中至多有一个为真命题答案C解析綈(p或q)假,p或q真,p与q至少一真3与命题“若aM,则bM”等价的命题是()A若aM,则bMB若bM,则aMC若aM,则bMD若bM,则aM答案D解析即
2、原命题的逆否命题,结论的否定bM作条件,条件的否定aM作结论,故选D.4如果不等式|xa|<1成立的充分非必要条件是<x<,则实数a的取值范围是()A.<a<B.aCa>或a< Da或a答案B解析|xa|1a1xa1由题意知(a1,a1)则有,且等号不同时成立解得a,故选B.5设集合U(x,y)|xR,yR,A(x,y)|2xym>0,B(x,y)|xyn0,那么点P(2,3)A(UB)的充要条件是()Am>1,n<5 Bm<1,n<5Cm>1,n>5 Dm<1,n>5答案A解析PAUB,PA且PB
3、,故选A.6设A、B、C、D是空间四个不同的点,在下列命题中,不正确的是()A若AC与BD共面,则AD与BC共面B若AC与BD是异面直线,则AD与BC是异面直线C若ABAC,DBDC,则ADBCD若ABAC,DBDC,则ADBC答案C7已知数列an,“对任意的nN*,点Pn(n,an)都在直线y3x2上”是“an为等差数列”的()A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件答案A解析点Pn(n,an)在直线y3x2上,即有an3n2,则能推出an是等差数列;但反过来,an是等差数列,an3n2未必成立,所以是充分不必要条件,故选A.8(2010·福建文,8)若
4、向量a(x,3)(xR),则“x4”是“|a|5”的()A充分而不必要条件 B必要而不充分条件C充要条件 D既不充分又不必要条件答案A解析本题主要考查充分必要条件问题当x4时,|a|5当|a|5时,解得x±4.所以“x4”是“|a|5”的充分而不必要条件9在命题“若抛物线yax2bxc的开口向下,则集合x|ax2bxc<0”的逆命题,否命题,逆否命题的真假结论是()A都真 B都假C否命题真 D逆否命题真答案D解析若抛物线yax2bxc的开口向下,又xR,则必存在x,使ax2bxc<0.故原命题真,其逆否命题也为真,其逆命题为“若x|ax2bxc<0,则抛物线yax2
5、bxc的开口向下”当a0时,显然为假命题,则其否命题也为假,故选D.10(09·宁夏海南理)有四个关于三角函数的命题:p1:xR,sin2cos2p2:x、yR,sin(xy)sinxsinyp3:x0,sinxp4:sinxcosyxy其中假命题的是()Ap1,p4 Bp2,p4Cp1,p3 Dp3,p4答案A解析p1是假命题,xR,sin2cos21;p2是真命题,例如:当xy时,sin(xy)sinxsiny0.p3是真命题,x0,sinx>0,|sinx|sinx.p4是假命题,例如:sincosxy.11“”是“tan2cos”的()A充分不必要条件 B必要不充分条件
6、C充要条件 D既不充分也不必要条件答案A解析解法一:为方程tan2cos的解,是tan2cos成立的充分条件;又也是方程tan2cos的解,不是tan2cos的必要条件,故选A.解法二:tan2cos,sin0或cos,方程tan2cos的解集为A,显然A,故选A.12设a、b、c表示三条直线,、表示两个平面,则下列命题中逆命题不成立的是()A已知c,若c,则B已知b,c是a在内的射影,若bc,则baC已知b,若b,则D已知b,c,若c,则bc答案C解析A的逆命题是:c,若,则c,真命题;B的逆命题是b,c是a在内的射影,若ba,则bc.二、填空题(本大题共4个小题,每小题4分,共16分,把正
7、确答案填在题中横线上)13设有两个命题:p:|x|x1|m的解集为R;q:函数f(x)(73m)x是减函数,若这两个命题中有且只有一个真命题,实数m的取值范围是_答案1<m<2解析若p为真命题,则根据绝对值的几何意义可知m1.若q为真命题,则73m>1,所以m<2,若p真q假,则m.若p假q真,则1<m<2.综上所述,1<m<2.14把下面不完整的命题补充完整,并使之成为真命题:若函数f(x)3log2x的图象与g(x)的图象关于_对称,则函数g(x)_.(注:填上你认为可以成为真命题的一种情形即可,不必考虑所有可能的情形)答案可以填以下几种情形
8、之一:x轴,3log2xy轴,3log2(x)原点,3log2(x)直线yx,2x315已知p:ab5,q:a2或b3,则p是q的_条件答案充分不必要解析命题:“如果ab5,则a2或b3”的逆否命题为“如果a2且b3,则ab5”,显然是真命题pq即有:p是q的充分条件同理:p不是q的必要条件p是q的充分条件,但不是必要条件16(2010·四川文,16)设S为实数集R的非空子集,若对任意x,yS,都有xy,xy,xyS,则称S为封闭集下列命题:集合Sab.a,b为整数为封闭集;若S为封闭集,则一定有0S;封闭集一定是无限集;若S为封闭集,则满足STC的任意集合T也是封闭集其中的真命题是
9、_(写出所有真命题的序号)答案解析本题考查根据所给信息解决实际问题的能力,要注意从基本概念,基本公式着手,理解题目中给出的信息是什么对于都正确,对于,封闭集不一定是无限集,例如当S0时,S是有限集,对于不正确,例如当S0,M是自然数集N时,M不是封闭集三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17(本小题满分12分)将下列命题改写为“若p,则q”的形式并判断真假(1)偶数能被2整除;(2)奇函数的图象关于原点对称;(3)在同圆或等圆中,同弧或等弧所对的圆周角不相等解析(1)若一个数是偶数,则它能被2整除真命题(2)若一个函数是奇函数,则它的图象关于原点对称
10、真命题(3)在同圆或等圆中,若两个角是同弧或等弧所对的圆周角,则它们不相等假命题18(本题满分12分)“菱形的对角线互相垂直”,将此命题写成“若p则q”的形式,写出它的逆命题、否命题、逆否命题,并指出其真假解析“若p则q”形式:“若一个四边形是菱形,则它的对角线互相垂直”逆命题:“若一个四边形的对角线互相垂直,则它是菱形”,假否命题:“若一个四边形不是菱形,则它的对角线不垂直”,假逆否命题:“若一个四边形的对角线不垂直,则它不是菱形”,真19(本小题满分12分)已知命题p:lg(x22x2)0;命题q:|1|<1.若p是真命题,q是假命题,求实数x的取值范围解析由lg(x22x2)0得x
11、22x21,即x22x30,即(x3)(x1)0,x3或x1.由|1|<1,1<1<10<x<4.命题q为假,x0或x4,则x|x3或x1x|x0或x4x|x1或x4,满足条件的实数x的取值范围为(,14,)20(本小题满分12分)已知p:x28x20>0,q:x22x1a2>0,若p是q的充分不必要条件,求实数a的取值范围解析p:Ax|x<2或x>10,q:bx|x<1a或x>1a,a>0如图依题意,pq,但q / p,说明AB,则有且等号不同时成立,解得0<a3实数a的取值范围是0<a321(本小题满分12
12、分)求使函数f(x)(a24a5)x24(a1)x3的图象全在x轴上方成立的充要条件解析要使函数f(x)的图象全在x轴上方的充要条件是:或解得1<a<19或a1,故1a<19.所以使函数f(x)的图象全在x轴的上方的充要条件是1a<19.22(本小题满分14分)证明二次函数f(x)ax2bxc(a0)的两个零点在点(m,0)的两侧的充要条件是af(m)<0.解析充分性:设b24ac0则af(x)a2x2abxaca2(x)2aca2(x)2(b24ac)0,所以af(m)0,这与af(m)<0矛盾,即b24ac>0.故二次函数f(x)ax2bxc(a0)有两个不等的零点,设为x1,x2,且x1<x2,从而f(x)a(xx1)(xx2),af(m)a2(mx1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度装修合同:某酒店装修施工合同(04版)
- 2024年影视作品版权购买合同
- 2024年度特许连锁经营合同
- 2024年度货车司机工作合同样本
- 西师大版数学五年级上册期中考试试卷带答案
- 2024年大数据中心建设与运营管理合同标的及分工与合作机制
- DB41T 1605-2018 一体式化粪池
- DB41T 1074-2015 城市公交智能调度系统 终端设备技术要求
- 2024年度社区物业安防监控系统安装合同
- 2024三人退伙责任分配协议书
- 《BIQS基础培训》课件
- 【浅析PLC在数控机床中的应用5000字(论文)】
- 企业经营模拟实训智慧树知到期末考试答案章节答案2024年华南农业大学
- 家长会课件:主题班会高二家长会课件
- 市政设施维护方案
- 建筑防水工程技术规程DBJ-T 15-19-2020
- 大学会计生涯发展展示
- 2024年“312”新高考志愿填报指南
- 13区域分析与区域规划(第三版)电子教案(第十三章)
- 跨界产品研发与实战智慧树知到期末考试答案2024年
- 2024年山东青岛城投金融控股集团有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论