版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学选修2-2测试题 班级: 姓名:1、 选择题:本大题共8小题,每小题6分,共48分1复数的虚部为()2、设,当时,()3曲线在点处的切线方程为( )A B C D4积分( )A B C D5若关于的方程有实根,则纯虚数等于()6 某人要剪一个如图所示的实心纸花瓣,纸花瓣的边界由六段全等的正弦曲线弧组成,其中曲线的六个交点正好是一个正六边形的六个顶点,则这个纸花瓣的面积为( )A BC D7 平面几何中,有边长为的正三角形内任一点到三边距离之和为定值,类比上述命题,棱长为的正四面体内任一点到四个面的距离之和为()8已知函数的图象与轴有三个不同交点,且在,时取得极值,则的值为( )A4 B
2、5 C6 D不确定2、 填空题:本大题共6小题,每小题6分,共36分把答案填在题中横线上9若复数满足,则10平面几何中,有边长为的正三角形内任一点到三边距离之和为定值,类比上述命题,棱长为的正四面体内任一点到四个面的距离之和为 _11曲线在点处的切线与轴、直线所围成的三角形的面积为,则_ 。12仔细观察右边图形:图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是_13质点运动的速度,则质点由开始运动到停止所走过的路程是14.若函数在区间上是单调递增函数,则实数的取值范围是_三、解答题:本大题共4小题,共
3、66分解答应写出文字说明,证明过程或演算步骤15、(本小题满分16分)(1)已知是正实数,求证:(2)计算 16(本小题满分16分)已知函数(x>0)在x = 1处取得极值-3-c,其中a,b,c为常数。(1)试确定a,b的值;(2)讨论函数f(x)的单调区间;(3)若对任意x>0,不等式恒成立,求c的取值范围。17、(本小题满分16分)已知数列的前项和(1)计算,;(2)猜想的表达式,并用数学归纳法证明你的结论18(本小题满分18分)已知函数,其中(1)若是函数的极值点,求实数的值;(2)若对任意的(为自然对数的底数)都有成立,求实数的取值范围高中数学选修2-2测试题答案一、选择
4、题:(本大题共10小题,每小题5分,共50分。)12345678DCBBABBB二、填空题:(本大题共4小题,每小题4分,共16分)9. 10. 11. 12. 108m 13.91 14. 三、解答题:本大题共4小题,共66分解答应写出文字说明,证明过程或演算步骤15、(1) 证明:要证,只需证即证即证 即证,即该式显然成立,所以(2) 1016解:(1)由题意知,因此,从而又对求导得由题意,因此,解得(2)由(I)知(),令,解得当时,此时为减函数;当时,此时为增函数因此的单调递减区间为,而的单调递增区间为(3)由(II)知,在处取得极小值,此极小值也是最小值,要使()恒成立,只需即,从而,解得或17、解:(1)依题设可得,;(2)猜想:证明:当时,猜想显然成立 假设时,猜想成立,即 那么,当时,即 又,所以,从而即时,猜想也成立 故由和,可知猜想成立18(1)解法1:,其定义域为, 是函数的极值点,即 , 经检验当时,是函数的极值点, 解法2:,其定义域为, 令,即,整理,得,的两个实根(舍去),当变化时,的变化情况如下表:0极小值依题意,即, (2)解:对任意的都有成立等价于对任意的都有 当1,时,函数在上是增函数 ,且,当且1,时,函数在1,上是增函数,.由,得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初三生活指南模板
- 财务风险管理报告模板
- 家属追悼会致辞范文六篇
- 课程设计营销
- 2024年幼儿园中班语言教案含反思
- 二零二五年度面包砖施工安全生产责任合同4篇
- 2024年心理咨询师题库及完整答案(易错题)
- 二零二五年社区图书馆图书采购合同2篇
- 二零二五年度在线教育平台学员免责协议书范本4篇
- 高分子防水卷材施工方案
- 2024年医销售药销售工作总结
- GB/T 44888-2024政务服务大厅智能化建设指南
- 2023-2024学年江西省萍乡市八年级(上)期末物理试卷
- 四则混合运算100道题四年级上册及答案
- 四川省高职单招电气技术类《电子基础》历年考试真题试题库(含答案)
- 2024年江西生物科技职业学院单招职业技能测试题库带解析答案
- 桥本甲状腺炎-90天治疗方案
- (2024年)安全注射培训课件
- 2024版《建设工程开工、停工、复工安全管理台账表格(流程图、申请表、报审表、考核表、通知单等)》模版
- 酒店人防管理制度
- 油田酸化工艺技术
评论
0/150
提交评论