版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、几何中的最值问题几何中最值问题包括:“面积最值”及“线段(和、差)最值”. 求面积的最值,需要将面积表达成函数,借助函数性质结合取值范围求解; 求线段及线段和、差的最值,需要借助“垂线段最短”、“两点之间线段最短”及“三角形三边关系”等相关定理转化处理.常用定理:1、两点之间,线段最短(已知两个定点时)2、垂线段最短(已知一个定点、一条定直线时)3、三角形三边关系(已知两边长固定或其和、差固定时) PA+PB最小,需转化,使点在线异侧 |PA-PB|最大,需转化,使点在线同侧4、 圆外一点P与圆心的连线所成的直线与圆的两个交点,离P最近的点即为P到圆的最近距离,离P最远的点即为P到圆的最远距离
2、类型一 线段和最小值1. 如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_cm 第1题图 第2题图 第3题图 第4题图2. 如图,点P是AOB内一定点,点M、N分别在边OA、OB上运动,若AOB=45°,OP=3,则PMN周长的最小值为 . 3. 如图,正方形ABCD的边长是4,DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值为 .4. 如图,在菱形ABCD中,AB=2,A=120°,点P、Q、K分别为线段B
3、C、CD、BD上的任意一点,则PK+QK的最小值为 .5. 如图,当四边形PABN的周长最小时,a = 6. 如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点. 若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,则点F的坐标为 . 第5题图 第6题图 第7题图变式加深:7、如图,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,点B到原点O的最大距离为()A. B. C. D. 第8题图 第9题图 第10题图8、如图,MON=90°,矩形ABCD的
4、顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为 9、如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG与点H。若正方形的边长为2,则线段DH长度的最小值是 10、如图,点P在第一象限,ABP是边长为2的等边三角形,当点A在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是_.若将ABP中边PA的长度改为,另两边长度不变,则点P到原点的最大距离变为_类型二 线段差最大值1、如图,两点A、B在直线
5、MN外的同侧,A到MN的距离AC=8,B到MN的距离BD=5,CD=4,P在直线MN上运动,则的最大值等于 第1题图 第2题图 第3题图 2、点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所 示若P是x轴上使得的值最大的点,Q是y轴上使得QA+QB的值最小的点,则 3、如图所示,已知A(1/2,y1),B(2,y2)为反比例函数y=1/x图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是 4、如下图,一次函数y1=kx-2与反比例函数y2=m/x(m < 0)的图象交于A,B两点,其中点A的坐标为(-6,2)(
6、1)求m,k的值;(2)点P为y轴上的一个动点,当点P在什么位置时|PA-PB|的值最大?并求出最大值.核心:画曲为直5、已知如图,圆锥的底面圆的半径为1,母线长OA为2,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为 6、如图,圆柱底面半径为,高为,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为 。7、在锐角三角形ABC中,BC=,ABC=45°,BD平分ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是 OCBA 第5题图 第6题图 第7题图 类型三 线段最值1、已知O是以原点为圆心
7、,为半径的圆,点P是直线上的一点,过点P作O的一条切线PQ,Q为切点,则切线长PQ的最小值为_ 2、在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx-3k+4与圆O交于B、C两点,则弦BC的长的最小值为_.第3题图 第4题图 第5题图3、如图,在ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PEAB于E,PFAC于F,M为EF中点,则AM的最小值为_4、如图,已知AB=10,P是线段AB上任意一点,在AB的同侧分别以AP和PB为边作等边APC和等边BPD,则CD长度的最小值为 5、如图,在ABC中,BAC=120°,AB=AC=4,M、N两
8、点分别是边AB、AC上的动点,将AMN沿MN翻折,A点的对应点为A,连接BA,则BA的最小值是_第6题图 第7题图 第8题图 第9题图6、如图,一副三角板拼在一起,O为AD的中点,AB=a将ABO沿BO对折于ABO,点M为BC上一动点,则AM的最小值为 7、如图,在RtACB中,ACB=90°,AC=6,BC=8,P、Q两点分别是边AC、BC上的动点,将PCQ沿PQ翻折,C点的对应点为,连接A,则A的最小值是_8、如图,在ABC中,ACB=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是
9、 .9、如图,ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为边AB上一动点,且PEAC于点E,PFBC于点F,则线段EF长度的最小值是_10、如图,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,点B到原点O的最大距离为_第10题图 第11题图 第11题备用图11、如图,直角梯形纸片ABCD,ADAB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将AEF沿EF翻折,点A的落点记为P(1)当P落在线段CD上时,PD的取值范围为 ;(2)当P落在直角梯形ABCD内部时,PD的最小值等于 . 类型四 圆外点和圆的最值1、动手操作:在矩形纸片
10、ABCD中,AB=3,AD=5如图所示,折叠纸片,使点A落在BC边上的A处,折痕为PQ,当点A在BC边上移动时,折痕的端点P、Q也随之移动若限定点P、Q分别在AB、AD边上移动,则点A在BC边上可移动的最大距离为 第1题图 第2题图2、如图,菱形ABCD中,A=60°,AB=4,A、B的半径分别为2和1,P、E、F分别是边CD、A和B上的动点,则PE+PF的最小值是 3、在平面直角坐标系中,对于任意两点与的“非常距离”,给出如下定义:若,则点与点的“非常距离”为;若,则点与点的“非常距离”为例如:点,点,因为,所以点与点的“非常距离”为,也就是图1中线段与线段长度的较大值(点为垂直于轴的直线与垂直于轴的直线的交点)1)已知点,为轴上的一个动点,若点与点的“非常距离”为2,写出一个满足条件的点的坐标;直接写出点与点的“非常距离”的最小值;(2)已知是直线上的一个动点,如图2,点的坐标是(0,1),求点与点的“非常距离”的最小值及相应的点的坐标;如图3,是以原点为圆心,1为半径的圆上的一个动点,求点与点的“非常距离”的最小值及相应的点和点的坐标4、在平面直角坐标系中,已知抛物线(为常数)的顶点为,等腰直角三角形的定点的坐标为,的坐标为,直角顶点在第四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版物流企业市场调研与分析合同3篇
- 娱乐行业安全工作总结制药行业安全工作总结
- 引导学生树立正确语文学习态度
- 电子产品客服工作总结
- 网页设计美工工作总结
- 音乐行业演出场地卫生消毒计划
- 二零二五年度钢结构建筑拆除与安装一体化合同
- 2025版消防安全设施安装合同3篇
- 二零二五年度环保节能设备销售、安装、能效评估服务合同3篇
- 二零二五版珍贵树木销售合作协议3篇
- 2025年1月浙江高考英语听力试题真题完整版(含答案+文本+MP3)
- 《人工智能发展史》课件
- 《UL线材培训资识》课件
- 小学一年级数学20以内的口算题(可直接打印A4)
- 《精密板料矫平机 第1部分:型式和基本参数》
- 舞蹈课家长会
- 自来水质量提升技术方案
- 工业自动化生产线操作手册
- 房地产销售任务及激励制度
- 2024年内蒙古中考语文试卷五套合卷附答案
- 并购指南(如何发现好公司)
评论
0/150
提交评论