同济大学线性代数习题课ppt课件_第1页
同济大学线性代数习题课ppt课件_第2页
同济大学线性代数习题课ppt课件_第3页
同济大学线性代数习题课ppt课件_第4页
同济大学线性代数习题课ppt课件_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、利用范德蒙行列式计算利用范德蒙行列式计算例计算例计算利用范德蒙行列式计算行列式,应根据范德利用范德蒙行列式计算行列式,应根据范德蒙行列式的特点,将所给行列式化为范德蒙行列蒙行列式的特点,将所给行列式化为范德蒙行列式,然后根据范德蒙行列式计算出结果。式,然后根据范德蒙行列式计算出结果。.333222111222nnnDnnnn ,于是得到,于是得到增至增至幂次数便从幂次数便从则方则方若提取各行的公因子,若提取各行的公因子,递升至递升至而是由而是由变到变到序排列,但不是从序排列,但不是从次数自左至右按递升次次数自左至右按递升次方幂方幂数的不同方幂数的不同方幂中各行元素分别是一个中各行元素分别是一个

2、10.1, 10, nnnDn解解.1333122211111!121212nnnnDnnnn 上面等式右端行列式为上面等式右端行列式为n阶范德蒙行列式,由阶范德蒙行列式,由范德蒙行列式知范德蒙行列式知!.1 !2)!2()!1( !)1()2()24)(23()1()13)(12( !)(!1 nnnnnnnnxxnDjinjin评注本题所给行列式各行列都是某元评注本题所给行列式各行列都是某元素的不同方幂,而其方幂次数或其排列与范德蒙素的不同方幂,而其方幂次数或其排列与范德蒙行列式不完全相同,需要利用行列式的性质如行列式不完全相同,需要利用行列式的性质如提取公因子、调换各行列的次序等将此行提

3、取公因子、调换各行列的次序等将此行列式化成范德蒙行列式列式化成范德蒙行列式用化三角形行列式计算用化三角形行列式计算例计算例计算.43213213213211xaaaaaaxaaaaaxaaaaaxDnnnn 解解列列都都加加到到第第一一列列,得得将将第第1, 3 , 2 nxaaaxaxaaxaaxaxaaaaxDniinniinniinniin32121212111 提取第一列的公因子,得提取第一列的公因子,得.1111)(32222111xaaaxaaaxaaaaxDnnnniin 后后一一列列,得得倍倍加加到到最最列列的的将将第第列列,倍倍加加到到第第列列的的列列,将将第第倍倍加加到到第

4、第列列的的将将第第)(1,3)(12)(11aaan . )()(11 niiniiaxaxaxaaaaaxaaaxaxDnniin 23122121111010010001)(评注本题利用行列式的性质,采用评注本题利用行列式的性质,采用“化零化零”的方法,逐步将所给行列式化为三角形行列式的方法,逐步将所给行列式化为三角形行列式化零时一般尽量选含有的行列及含零较多化零时一般尽量选含有的行列及含零较多的行列);若没有,则可适当选取便于化零的行列);若没有,则可适当选取便于化零的数,或利用行列式性质将某行列中的某数的数,或利用行列式性质将某行列中的某数化为化为1 1;若所给行列式中元素间具有某些特

5、点,那么;若所给行列式中元素间具有某些特点,那么应充分利用这些特点,应用行列式性质,以达到应充分利用这些特点,应用行列式性质,以达到化为三角形行列式之目的化为三角形行列式之目的,得,得提取公因子提取公因子行中行中行,并从第行,并从第行都加到第行都加到第、的第的第将将dcbaD 114324用降阶法计算用降阶法计算例计算例计算.4abcdbadccdabdcbaD 解解,1111)(4abcdbadccdabdcbaD 列列,得得列列都都减减去去第第、再再将将第第1432,0001)(4dadbdcdcbcacdcbcbdbabdcbaD 行展开,得行展开,得按第按第1.)(4dadbdccbc

6、acdbcbdbadcbaD ,得得中中提提取取公公因因子子行行行行,再再从从第第行行加加到到第第把把上上面面右右端端行行列列式式第第dcba 112,011)(dadbdccbcacddcbadcbaD 列列,得得列列减减去去第第再再将将第第12行展开,得行展开,得按第按第1)()( )(22cbdadcbadcba )()(dcbadcbadcbadcba ,001)(4dacbdccbdacddcbadcbaD dacbcbdadcbadcbaD )(评注本题是利用行列式的性质将所给行列评注本题是利用行列式的性质将所给行列式的某行列化成只含有一个非零元素,然后式的某行列化成只含有一个非零

7、元素,然后按此行列展开,每展开一次,行列式的阶数按此行列展开,每展开一次,行列式的阶数可降低可降低 1阶,如此继续进行,直到行列式能直接阶,如此继续进行,直到行列式能直接计算出来为止一般展开成二阶行列式)这种计算出来为止一般展开成二阶行列式)这种方法对阶数不高的数字行列式比较适用方法对阶数不高的数字行列式比较适用用加边法计算用加边法计算例计算例计算解解.21xaaaaxaaaaxaDnn 1111000111nnaxaaDaaxaaaax1111111nnaaaxDxx111110nnnaaaaxxxx1111niinnaaaaxxxx1211nniiax xxx用递推法计算用递推法计算例计算

8、例计算.21xaaaaxaaaaxaDnn 解解拆成两个行列式之和拆成两个行列式之和列把列把依第依第DnnaaaaaxaaaaaxaaaaaxaDnn121 .000121xaaaxaaaaxaaaaxann .1121DxaxxxDnnnn 从从而而得得列展开列展开第第右端的第二个行列式按右端的第二个行列式按列列加到第加到第倍分别倍分别列的列的将第将第右端的第一个行列式右端的第一个行列式,1, 2 , 1)1(, nnn ,0000000001121DxaaxaxaxDnnnn 由此递推,得由此递推,得.,2122121212211DxxxaxxxaxxxDDxaxxxDnnnnnnnnnn

9、n 于是于是如此继续下去,可得如此继续下去,可得DxxxxxaxxxaxxxaxxxDnnnnnnn23142122121 )(21213142122121xxxaxaxxxxxaxxxaxxxaxxxnnnnnn ).(323112121xxxxxxxxxaxxxnnnn 时,还可改写成时,还可改写成当当021 xxxn).111(12121xxxaxxxDnnn 评注评注.1 1 .1,1 1的递推关系的递推关系列式更低阶行列式之间列式更低阶行列式之间阶行阶行,建立比,建立比阶更低阶的行列式表示阶更低阶的行列式表示比比用同样形式的用同样形式的阶行列式阶行列式时,还可以把给定的时,还可以把给

10、定的有有之间的递推关系之间的递推关系阶行列式阶行列式与与建立了建立了阶行列式表示出来阶行列式表示出来用同样形式的用同样形式的行列式行列式阶阶质把所给的质把所给的本题是利用行列式的性本题是利用行列式的性 nnDnDnDnDnnnnn用数学归纳法用数学归纳法例证明例证明.coscos21000100000cos210001cos210001cos nDn 证证对阶数对阶数n用数学归纳法用数学归纳法.,2, 1,2cos1cos22cos11cos,cos 221结结论论成成立立时时当当所所以以因因为为 nnDD 得得展展开开按按最最后后一一行行现现将将的的行行列列式式也也成成立立于于阶阶数数等等于

11、于下下证证对对的的行行列列式式结结论论成成立立假假设设对对阶阶数数小小于于,.,Dnnn.cos221DDDnnn ,)2cos( ,)1cos( ,21 nDnDnn由由归归纳纳假假设设;cos)2cos()2cos(cos)2cos()1cos(cos2 nnnnnnDn .结结论论成成立立所所以以对对一一切切自自然然数数 n评注评注.,)1(1,)(, 21同型的行列式同型的行列式是与是与不不否则所得的低阶行列式否则所得的低阶行列式展开展开列列或第或第行行按第按第不能不能展开展开列列或第或第行行本例必须按第本例必须按第表示表示展开成能用其同型的展开成能用其同型的为了将为了将DnnDDDn

12、nnn .,.,其猜想结果成立其猜想结果成立然后用数学归纳法证明然后用数学归纳法证明也可先猜想其结果也可先猜想其结果如果未告诉结果如果未告诉结果纳法来证明纳法来证明可考虑用数学归可考虑用数学归结论时结论时证明是与自然数有关的证明是与自然数有关的而要我们而要我们当行列式已告诉其结果当行列式已告诉其结果一般来讲一般来讲计算行列式的方法比较灵活,同一行列式可计算行列式的方法比较灵活,同一行列式可以有多种计算方法;有的行列式计算需要几种方以有多种计算方法;有的行列式计算需要几种方法综合应用在计算时,首先要仔细考察行列式法综合应用在计算时,首先要仔细考察行列式在构造上的特点,利用行列式的性质对它进行变在

13、构造上的特点,利用行列式的性质对它进行变换后,再考察它是否能用常用的几种方法换后,再考察它是否能用常用的几种方法小结小结当线性方程组方程个数与未知数个数相等、当线性方程组方程个数与未知数个数相等、且系数行列式不等于零时,可用克莱姆法则为且系数行列式不等于零时,可用克莱姆法则为了避免在计算中出现分数,可对有的方程乘以适了避免在计算中出现分数,可对有的方程乘以适当整数,把原方程组变成系数及常数项都是整数当整数,把原方程组变成系数及常数项都是整数的线性方程组后再求解的线性方程组后再求解.28)3(, 3)2(, 0)1( ),( fffxf使使求求一一个个二二次次多多项项式式例例1 10 0解解设所

14、求的二次多项式为设所求的二次多项式为,)(2cbxxaxf 由题意得由题意得,2839)3(, 324)2(, 0)1( cbafcbafcbaf., 的线性方程组的线性方程组数数这是一个关于三个未知这是一个关于三个未知cba.20,60,40, 020321 DDDD由克莱姆法则,得由克莱姆法则,得. 1, 3, 2321 DDcDDbDDa于是,所求的多项式为于是,所求的多项式为. 132)(2 xxxf证证.0, 0, 01,),(0000从而有系数行列式从而有系数行列式的非零解的非零解可视为齐次线性方程组可视为齐次线性方程组则则点点设所给三条直线交于一设所给三条直线交于一必要性必要性

15、bzaycxazcybxczbyaxzyyxxyxM. 00, 0, 0 cbabaycxacybxcbyax条条件件是是相相交交于于一一点点的的充充分分必必要要直直线线证证明明平平面面上上三三条条不不同同的的 例例1 11 1. 0)()()( )(21(222 accbbacbabacacbcba() baycxacybxcbyax,. 0, cbacba故故同同也不全相也不全相所以所以因为三条直线互不相同因为三条直线互不相同将将方方程程组组如如果果充充分分性性, 0 cba. 00,唯唯一一解解下下证证此此方方程程组组()有有()到到第第三三个个方方程程,得得的的第第一一、二二两两个个方

16、方程程加加 acybxcbyax. 00)(2)()(002222222 accaaccacacaaccabbacbaccbba,从从而而有有,于于是是得得。由由,则则如如果果.)1(.)2(. 0.00. 0, 02直直线线交交于于一一点点有有唯唯一一解解,即即三三条条不不同同方方程程组组从从而而知知有有唯唯一一解解组组由由克克莱莱姆姆法法则则知知,方方程程故故,与与题题设设矛矛盾盾得得再再由由得得由由不不妨妨设设 cbbaccbabacba例例12有甲、乙、丙三种化肥,甲种化肥每千有甲、乙、丙三种化肥,甲种化肥每千克含氮克含氮70克,磷克,磷8克,钾克,钾2克;乙种化肥每千克含克;乙种化肥

17、每千克含氮氮64克,磷克,磷10克,钾克,钾0.6克;丙种化肥每千克含氮克;丙种化肥每千克含氮70克,磷克,磷5克,钾克,钾1.4克若把此三种化肥混合,要克若把此三种化肥混合,要求总重量求总重量23千克且含磷千克且含磷149克,钾克,钾30克,问三种化克,问三种化肥各需多少千克?肥各需多少千克?解解题意得方程组题意得方程组依依千克千克、各需各需设甲、乙、丙三种化肥设甲、乙、丙三种化肥,1xxx .304 . 16 . 02,1495108,23321321321xxxxxxxxx,527 D此此方方程程组组的的系系数数行行列列式式8127581 321 DDD,又又.15, 5, 332 xx

18、x组组有有唯唯一一解解由由克克莱莱姆姆法法则则,此此方方程程.15,5 ,3 千千克克千千克克千千克克各各需需即即甲甲、乙乙、丙丙三三种种化化肥肥).(40,1552.1355.1357.1360.133020100:.)(000000332210准准确确到到小小数数两两位位时时水水银银密密度度求求由由实实验验测测得得以以下下数数据据的的关关系系为为与与温温度度设设水水银银密密度度 thttatataathth例例1313)1(.52.132700090030,5557 6 .13),(3210321032100 aaaaaaaaaaaaat

19、h得得方方程程组组将将测测得得的的数数据据分分别别代代入入解解)2(.008. 02700903,005. 0800402,003. 010010,60.133213213210 aaaaaaaaaa得得方方程程组组分分别别代代入入其其余余三三个个方方程程将将,12000 D此此方方程程组组的的系系数数行行列列式式.0000033. 0,00015. 0,0042. 0)2(,321 aaa的的唯唯一一解解得得方方程程组组由由克克莱莱姆姆法法则则,04. 0, 8 . 1,50321 DDD又又得得将将以以上上四四个个数数代代入入又又),(,60.130tha 由此得由此得.0000033.

20、000015. 00042. 060.13)(32tttth .46.13,56.13,40,15,00水水银银密密度度分分别别为为时时当当所所以以 t.46.13)40(,56.13)15( hh一、填空题一、填空题( (每小题每小题4 4分,共分,共4040分分) ) ijijnaDaaD则则若若, . 1 1322133213321,0, . 2xxxxxxxxxqpxxxxx列式列式则行则行的三个根的三个根是方程是方程设设行列式行列式 . 3 1000000001998000199700020001000D 4433221100000000 . 4ababbaba四四阶阶行行列列式式 443424144, . 5AAAAcdbaacbdadbcdcbaD则则设四阶行列式设四阶行列式的的符符号号为为在在五五阶阶行行列列式式中中3524415312 . 6aaaaa 的的系系数数是是中中在在函函数数321112 . 7xxxxxxxf abcdbadccdabdcba四阶行列式四阶行列式 . 8, . 9时时且且则则当当为为实实数数若若 baba010100 abba二、计算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论