版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、. 极坐标高考题的几种常见题型 贵州省册亨民族中学(552200) 韦万祥和直角坐标系一样,极坐标系是常用的一种坐标系,极坐标是历年理工类高考必考的内容,随着新课程改革的深入,在2007年4个省市新课标高考试题中有3个省市考查了极坐标.涉及较多的是极坐标与直角坐标的互化及简单应用.多以选择题、填空题形式出现,以考查基本概念,基本知识,基本运算为主,一般属于容易题.一、极坐标方程与直角坐标方程的互化互化条件:极点与原点重合,极轴与x轴正半轴重合,长度单位相同.互化公式: 或 的象限由点(x,y)所在的象限确定.例1(2007海南宁夏)O1和O2的极坐标方程分别为,(I)把O1和O2的极坐标方程化
2、为直角坐标方程;(II)求经过O1,O2交点的直线的直角坐标方程解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位 (I),由得所以即为O1的直角坐标方程同理为O2的直角坐标方程(II)解法一:由解得,即O1,O2交于点(0,0)和(2,2)过交点的直线的直角坐标方程为y=x解法二: 由,两式相减得4x-4y=0,即过交点的直线的直角坐标方程为y=x评述:本题主要考查曲线的极坐标方程化为直角坐标方程的方法及两圆公共弦所在直线方程的求法.例2(2003全国)圆锥曲线的准线方程是 (A) (B) (C) (D)解:由去分母后两边同时乘以得:,所以x2=8y ,其准线
3、方程为y=,在极坐标系中方程为,故选C.例3(1998年上海)以直角坐标系的原点O为极点,x轴的正半轴为极轴 建立极坐标系,若椭圆两焦点的极坐标分别是(1,),(1,),长轴长是4,则此 椭圆的直角坐标方程是_. 解:由已知条件知椭圆两焦点的直角坐标为(0,1),(0,-1).c=1,a=2,b2=a2-c2=3, 故所求椭圆的直角坐标方程为=1评述:点的直角坐标与极坐标的互化、曲线的极坐标方程与直角坐标方程的 互化要熟练掌握.类题:1(1995年上海)把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并且在两种坐标系中取相同的长度单位.若曲线的极坐标方程是,则它的直角坐标方程是_. (答案:
4、3x2-y2=1)2(1998年全国)曲线的极坐标方程=4sin化成直角坐标方程为 (A) x2+(y+2)2=4 (B) x2+(y-2)2=4 (C) (x-2)2+y2=4 (D) (x+2)2+y2=4 (答案:B)3(2002北京)已知某曲线的参数方程是(为参数)若以原点为极点,x轴的正半轴为极轴,长度单位不变,建立极坐标系,则该曲线的极坐标方程是(A) (B) (C) (D) (答案:D)二、已知曲线的极坐标方程,判断曲线类型 常见的直线和圆的极坐标方程及极坐标系中的旋转不变性: 1、直线的极坐标方程(a>0) (1)过极点,并且与极轴成角的直线的极坐标方程:=; (2)垂直
5、于极轴和极点间的距离为a的直线的极坐标方程:cos=a; (3)平行于极轴和极轴间的距离为a的直线的极坐标方程:sin=a; (4)不过极点,和极轴成角,到极点距离为a的直线的极坐标方程:sin(-)=a.2、圆的极坐标方程(a>0) (1)圆心在极点,半径为a的圆的极坐标方程:=a; (2)圆心在(a,0),半径为a的圆的极坐标方程:=2acos; (3)圆心在(a,),半径为a的圆的极坐标方程:=; (4)圆心在(a,),半径为a的圆的极坐标方程:=2asin; (5)圆心在(a,),半径为a的圆的极坐标方程:=; (6)圆心在(a,0),半径为a的圆的极坐标方程:=2acos(-0
6、).3、极坐标系中的旋转不变性: 曲线f(,+)=0是将曲线f(,)=0绕极点旋转|角(时,按顺 时针方向旋转,时,按逆时针方向旋转)而得到.例4(1990年全国)极坐标方程4sin2=5所表示的曲线是 (A)圆 (B)椭圆 (C)双曲线的一支 (D)抛物线解:由已知极坐标方程及三角公式得:2(1-cos)=5,2=2cos+5,由互化公式得2=2x+5,平方整理得 y2=5(x+),方程表示的曲线是抛物线,故选D.评述:对于给出的极坐标方程相对于极坐标系而言不是标准的,一般将其等价转 化为直角坐标方程来判断其曲线类型.类题:1(1991年三南)极坐标方程4sin2=3表示的曲线是 (A)二条
7、射线 (B)二条相交直线 (C) 圆 (D) 抛物线 (答案:B) 2(1987年全国)极坐标方程=sin+2cos所表示的曲线是 (A)直线 (B)圆 (C)双曲线 (D) 抛物线 (答案:B) 3(2001年广东、)极坐标方程2cos2=1所表示的曲线是(A)两条相交直线 (B)圆 (C)椭圆 (D)双曲线 (答案:D)4(2003北京)极坐标方程表示的曲线是(A)圆 (B)椭圆 (C)抛物线 (D)双曲线 (答案:D)例5(1994年全国)极坐标方程=cos(-)所表示的曲线是 (A) 双曲线 (B)椭圆 (C)抛物线 (D)圆 解:曲线=cos(-)=cos(-)是把圆=cos绕极点按
8、逆时针方向旋 转而得,曲线的形状仍然是一个圆,故选D评述:把曲线的极坐标方程化为直角坐标方程较为麻烦,利用旋转不变性则更容易得出答案.方程cos(-0)=0表示一条直线,方程=acos(-0)表示半径为, 圆心为(,0)的圆,要注意两者的区别.1x01x01x0x01例6(2001年全国)极坐标方程=2sin(+)的图形是(A) (B) (C) (D)解:圆=2sin(+)是把圆=2sin绕极点按顺时针方向旋转而得,圆心的极坐标为(1,),故选C. 类题:1(2002江苏)极坐标方程与=的图形是0x0x0x0x (A) (B) (C) (D)(答案:B)2(2004北京春)在极坐标系中,圆心在
9、(且过极点的圆的方程为(A)(B) (C)(D)(答案:B)三、判断曲线位置关系例7(2000年京皖春)直线=和直线sin(-)=1的位置关系 (A) 垂直 (B) 平行 (C) 相交但不垂直 (D) 重合 解:直线sin(-)=1是把直线sin=1绕极点按逆时针方向旋转角 而得, 从而两直线平行,故选B. 评注:对直线sin(-)=1与直线sin=1的关系要十分熟悉.四、根据条件求直线和圆的极坐标方程例8(2002北京春)在极坐标系中,如果一个圆的方程是r=4cosq+6sinq,那么过圆心且与极轴平行的直线方程是(A) rsinq=3 (B) rsinq = 3 (C) rcosq =2
10、(D) rcosq = 2解:将圆的极坐标方程化为直角坐标方程得:x2+y2=4x+6y,即(x-2)2+(y-3)2=13.圆心为(2,3),所求直线方程为y=3,即rsinq=3,故选A. 评述:注意直线的直角坐标方程极易求出. 类题:1(1992年上海)在极坐标方程中,与圆=4sin相切的一条直线的方程是 (A) sin=2 (B)cos=2 (C)cos= 4 (D)cos=- 4(答案:B) 2(1993年上海)在极坐标方程中,过点M(2,)且平行于极轴的直线的极坐标方程是_. (答案: sin=2)3(1994年上海)已知点P的极坐标为(1,),那么过点P且垂直于极轴的直线的极坐标
11、方程为 (A)=1 (B)=cos (C)= (D)=(答案:C) 4(2000年全国)以极坐标系中点(1,1)为圆心,1为半径的圆的方程是(A)=2cos(-) (B)=2sin(-)(C)=2cos(-1) (D)=2sin(-1)(答案:C)五、求曲线中点的极坐标例9(2003上海)在极坐标系中,定点A(1,),点B在直线上运动,当线段AB最短时,点B的极坐标是_.解:在直角坐标系中,A点坐标为(0,1),B在直线x+y=0上, AB最短,则B为,化为极坐标为.例10(1999年上海)极坐标方程52cos2+2-24=0所表示的曲线焦点的极坐标为_. 解:由52cos2+2-24=0得5
12、2(cos2-sin2)+2-24=0化为直角坐标方程得,该双曲线的焦点的直角坐标为(,0)与(-,0),故所求 焦点的极坐标为(,0)、(,). 评述:本题考查圆锥曲线极坐标方程的基础知识,掌握点的直角坐标与极坐标 的对应关系极为有用.例11(2001年京皖蒙春)极坐标系中,圆=4cos+3sin的圆心的坐标是 (A) (,arcsin) (B)(5,arcsin) (C)(5,arcsin) (D)(,arcsin)解:由= 4cos+3sin=5(cos+sin)=5cos(-)(其中sin=) 所以所求圆心坐标为(,arcsin),故选A.类题:(2002上海)若A、B两点的极坐标为A
13、(4,),B(6,0),则AB中点的极坐标是_.(极角用反三角函数值表示). 答案.()六、求距离例12(2007广东文)在极坐标系中,直线的方程为sin=3,则点(2,)到直线的距离为_.解: 将直线的极坐标方程sin=3化为直角坐标系方程得:y=3,点(2,)在直角坐标系中为(,1),故点(2,) 到直线的距离为2.评注:本题主要考查极坐标系与直角坐标系之间的互化.例13(1992年全国、1996年上海)极坐标方程分别是=cos和=sin的两个圆的圆心距是 (A) 2 (B) (C) 1 (D) 解法一:两圆的圆心坐标分别为(,0)与(,),由此求得圆心距为,选D.解法二:将极坐标方程化成
14、直角坐标方程得(x-)2+y2=与x2+(y-)2=, 由此求得圆心距为,选D.评述:本题考查对极坐标的理解,理解深刻者可在极坐标系上画出简图直接求解,一般理解者,化极坐标方程为直角坐标方程也能顺利得到正确答案.例14(1997年全国)已知直线的极坐标方程为sin(+)=,则极点到该直线的距离是_. 解法一:化直线方程为=,根据极坐标的概念极点到该直线的距离等于这个函数的最小值,当sin(+)=1时,取最小值即为所求.解法二:对极坐标欠熟悉时,可把直线的极坐标方程化为直角坐标方程x+y=1, 应用点到直线的距离公式得原点到此直线的距离为.类题:1(2000年上海)在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线= 4cos于A、B两点,则|AB|=_. (答案:2)2(2004上海)在极坐标系中,点M(4,)到直线:的距离d=_. (答案:)七、判定曲线的对称性 例15(1999年全国)在极坐标系中,曲线= 4sin(-)关于 (A) 直线=轴对称 (B)直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家用水龙头过滤器产品供应链分析
- 包装用纸袋产品供应链分析
- 工商管理辅助行业相关项目经营管理报告
- 含药喉咙喷剂产品供应链分析
- 发行预付费代金券行业相关项目经营管理报告
- 刷子用貉毛产业链招商引资的调研报告
- 年金保险行业相关项目经营管理报告
- 虚拟现实游戏用耳机项目运营指导方案
- 安排和举办青年足球训练项目行业经营分析报告
- 办公家具出租行业相关项目经营管理报告
- 2024年湖北机场集团限公司楚天启航“A”春季校园招聘35人(高频重点提升专题训练)共500题附带答案详解
- 广东能源集团节能降碳有限公司招聘笔试题库2024
- 2024年秋季新改版教科版三年级上册科学全册核心素养目标教案教学设计
- 2024广东深圳市优才人力资源限公司招聘14人(派遣至园山街道)(高频重点复习提升训练)共500题附带答案详解
- DL∕T 1835-2018 燃气轮机及联合循环机组启动调试导则
- 玩具跌落测试指引
- ISO 55000-2024 资产管理 术语、综述和原则(中文版-雷泽佳翻译-2024)
- Unit 4 My Favourite Subject教学设计2024年秋人教版新教材七年级英语上册
- 云计算与物联网外文翻译文献
- 2024年俄罗斯生物可降解一次性餐具行业应用与市场潜力评估
- 四川省成都市实验外国语校2024届中考联考语文试卷含解析
评论
0/150
提交评论