下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 中小学1对1课外辅导专家龙文教育学科教师辅导讲义学员姓名: 教师:课 题授课时间:2012年 月 日 教学目标掌握平行四边形的性质,判定,推论及其应用重点、难点行四边形的性质,判定考点及考试要求知识点:一、 多边形1、 四边形的内角和等于 2、 n边形的内角和为 (n3)。3、 n边形的对角线的总条数 (n3)。4、 既无缝隙又不重叠的铺法,我们称为平面的镶嵌5、 、 、 能够单独镶嵌。6、用一种正多边形单独镶嵌,则这个正多边形的内角度数能整除 °二、平行四边形的性质1、 叫做平行四边形。平行四边形用符号“ ”表示。2、平行四边形的角有什么关系: , 。3、平行四边形的边有什么关系
2、: , 。4、平行四边形的对角线有什么关系: 。三、平行四边形的判定1、两组对边分别平行的四边形是平行四边形2、一组对边平行且相等的四边形是平行四边形3、两组对边分别相等的四边形是平行四边形4、对角线互相平分的四边形是平行四边形四、中心对称1、如果一个图形绕一个点旋转180°后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫对称中心。平行四边形是中心对称图形,其对称中心是对角线交点2、对称中心平分连结两个对称点的线段3、在直角坐标系中,点(x,y)与点(-x,-y)关于原点对称五、三角形的中位线1、 叫做三角形的中位线。2、三角形的中位线的定理是 。六、
3、逆命题和逆定理1、如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题。如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。2、如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的逆定理,这两个定理叫做互逆定理。典型例题:(一)多边形1一个多边形的对角线的条数与它的边数相等,这个多边形的边数是()A7B6C5D42一个多边形的对角线的条数恰好是边数的3倍,则这个多边形的边数为()A6B7C8D93观察图中的图形,并阅读图形下面的相关文字:三角形的对角线有0条,四边形的对角线有2条,五边形的对角线有5条,六边形的对角线有9条通过分
4、析上面的材料,请你说说十边形的对角线有多少条?你能总结出n边形的对角线有多少条吗?4在四边形ABCD中,D=60°,B比A大20°,C是A的2倍,求A,B,C的大小5在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下丝空白,又不互相重叠(在几何里叫做平面镶嵌)这显然与正多边形的内角大小有关当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形(1)请根据下列图形,填写表中空格:正多边形边数3456正多边形每个内角的度数(2)如
5、图,如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形;(3)正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由(二)平行四边形的性质1、如图,在周长为20cm的ABCD中,ABAD,AC、BD相交于点O,OEBD交AD于E,则ABE的周长为() (A)4cm (B)6cm (C)8cm (D)10cm2如图,在平行四边形ABCD中,E为BC中点,AE的延长线与DC的延长线相交于点F(1)证明:DFA=FAB;(2)证明:ABEFCE3如图,在ABC
6、D中,E为BC的中点,连接DE延长DE交AB的延长线于点F求证:AB=BF 4、已知如图:在四边形ABCD中,ABCD,ADBC,点E、F分别在BC和AD边上,AFCE,EF和对角线BD相交于点O,求证:点O是BD的中点。OFEDCBA(三)、平行四边形的判定1四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:ABCD,ADBC;ABCD,ADBC;AOCO,BODO;ABCD,ADBC.其中一定能判定这个四边形是平行四边形的条件有()A1组 B2组 C3组 D4组 2点A、B、C是平面内不在同一直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在
7、平面符合这样条件的点D有()A1个 B2个 C3个 D4个3已知,E、F是四边形ABCD的对角线AC上的两点,AE=CF,BE=DF,BEDF求证:四边形ABCD是平行四边形4如图所示,AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D求证:四边形ABCD是平行四边形5、已知如图12-1-21所示,在ABCD中,E、F是对角线AC上的两点,且AE=CF,M、N是AB、CD上的点,且BMDN.求证:四边形MENF是平行四边形(四)三角形中位线1、三角形各边长为5、9、12,则连结各边中点所构成的三角形的周长是 2、如图,D、E、F分别为ABC三边上的中点,G为AE的中点,BE与
8、DF、DG分别交于P、Q两点,则PQBE GQPFEDCBA CBA3、如图,已知ABC的周长为1,连结ABC三边的中点构成第二个三角形,再连结第二个三角形三边的中点构成第三个三角形,依此类推,第2004个三角形的周长为( ) A、 B、 C、 D、4、如图,ABC的三边长分别为AB14,BC16,AC26,P为A的平分线AD上一点,且BPAD,M为BC的中点,求PM的长。 QPMDCBA5、如图4-113,已知在直角三角形ABC中,BAC=90°,D,E,F分别是BC,CA,AB的中点,AD,EF交于O点(1)求证:AD=EF;(2)若DOF=2AOF,求证:ABD是等边三角形(五)平行四边形的面积平行四边形的面积=底×该底上的高;平行四边对角线分得的四个三角形面积相等。拓展:同底(等底)同高(等高)的平行四边形面积相等如图2,1、一个平行四边形的底是10.2厘米,高是4厘米,与它等底等高的三角形的面积是。40.8平方厘米 20.4平方厘米 408平方厘米 204平方厘米2、一个三角形的底和一个平行四边形的底相等,面积也相等。平行四边形的高是4.8厘米,三角形的高是。4.8厘米 2.4厘米
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业记账代理协议规范
- 2024年度公司用车租赁协议条款纲要
- 2024年隔音室建造协议格式
- 2024年保健品供应协议模板
- 2024室内设计服务协议样本
- 2024年轻钢结构建设协议模板
- 2024年定制型软件购销协议模板
- 2024年商品购销协议范本
- 山东省聊城市东阿县姜楼中学2024-2025学年九年级上学期11月月考历史试题(含答案)
- 2024年环保型纺织材料采购协议
- 苯妥英锌的合成1(修改)
- 信创医疗工作总结
- 高中物理《相互作用》大单元集体备课
- 南仁东和中国天眼课件
- 彩票市场销售计划书
- 设备维保的现场维修与故障处理
- 2024《中央企业安全生产治本攻坚三年行动方案(2024-2026年)》
- 纪委监督工作培训课件
- 虫害分析分析报告
- 《民间文学导论》课件
- 《输血查对制度》课件
评论
0/150
提交评论