版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2018年北京中考各区一模新定义朝阳28. 对于平面直角坐标系中的点P和线段AB,其中A(t,0)、B(t+2,0)两点,给出如下定义:若在线段AB上存在一点Q,使得P,Q两点间的距离小于或等于1,则称P为线段AB的伴随点(1)当t=3时,在点P1(1,1),P2(0,0),P3(-2,-1)中,线段AB的伴随点是 ;在直线y=2x+b上存在线段AB的伴随点M、N, 且MN,求b的取值范围;(2)线段AB的中点关于点(2,0)的对称点是C,将射线CO以点C为中心,顺时针旋转30°得到射线l,若射线l上存在线段AB的伴随点,直接写出t的取值范围延庆28平面直角坐标系xOy中,点,与,如
2、果满足,其中,则称点A与点B互为反等点已知:点C(3,4)(1)下列各点中, 与点C互为 反等点; D(3,4),E(3,4),F(3,4)(2)已知点G(5,4),连接线段CG,若在线段CG上存在两点P,Q互为反等点,求点P的横坐标的取值范围;(3)已知O的半径为r,若O与(2)中线段CG的两个交点互为反等点,求r的取值范围大兴28.在平面直角坐标系中,过轴上一点作平行于轴的直线交某函数图象于点,点是轴上一动点,连接,过点作的垂线交轴于点(在线段上,不与点重合),则称为点,,的“平横纵直角”.图1为点,,的“平横纵直角”的示意图. 图1如图2,在平面直角坐标系中,已知二次函数图象与轴交于点,
3、与轴分别交于点(,0),(12,0). 若过点F作平行于轴的直线交抛物线于点.(1)点的横坐标为 ; 图(2)已知一直角为点的“平横纵直角”,若在线段上存在不同的两点、,使相应的点、都与点重合,试求的取值范围;(3)设抛物线的顶点为点,连接与交于点,当时,求的取值范围东城28给出如下定义:对于O的弦MN和O外一点P(M,O,N三点不共线,且P,O在直线MN的异侧),当MPNMON=180°时,则称点 P是线段MN关于点O 的关联点图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,O的半径为1.(1)如图2, ,.在A(1,0),B(1,1), 三点中, 是线段M
4、N关于点O的关联点的是 ;(2)如图3, M(0,1),N,点D是线段 MN关于点O的关联点.MDN的大小为 °;在第一象限内有一点E,点E是线段MN关于点O的关联点,判断MNE的形状,并直接写出点E的坐标; 点F在直线上,当MFNMDN时,求点F的横坐标的取值范围丰台28对于平面直角坐标系xOy中的点M和图形,给出如下定义:点P为图形上一点,点Q为图形上一点,当点M是线段PQ的中点时,称点M是图形,的“中立点”如果点P(x1,y1),Q(x2,y2),那么“中立点”M的坐标为已知,点A(-3,0),B(0,4),C(4,0)(1)连接BC,在点D(,0),E(0,1),F(0,)中
5、,可以成为点A和线段BC的“中立点”的是_;(2)已知点G(3,0),G的半径为2如果直线y = - x + 1上存在点K可以成为点A和G的“中立点”,求点K的坐标;(3)以点C为圆心,半径为2作圆点N为直线y = 2x + 4上的一点,如果存在点N,使得轴上的一点可以成为点N与C的“中立点”,直接写出点N的横坐标的取值范围海淀28在平面直角坐标系中,对于点和,给出如下定义:若上存在一点不与重合,使点关于直线的对称点在上,则称为的反射点下图为的反射点的示意图(1)已知点的坐标为,的半径为,在点,中,的反射点是_;点在直线上,若为的反射点,求点的横坐标的取值范围;(2) 的圆心在轴上,半径为,轴
6、上存在点是的反射点,直接写出圆心的横坐标的取值范围怀柔28. P是C外一点,若射线PC交C于点A,B两点,则给出如下定义:若0PAPB3,则点P为C的“特征点”(1)当O的半径为1时在点P1(,0)、P2(0,2)、P3(4,0)中,O的“特征点”是 ;点P在直线y=x+b上,若点P为O的“特征点”求b的取值范围;(2)C的圆心在x轴上,半径为1,直线y=x+1与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是C的“特征点”,直接写出点C的横坐标的取值范围门头沟28. 在平面直角坐标系xOy中,点M的坐标为,点N的坐标为,且,,我们规定:如果存在点P,使是以线段MN为直角边的等腰直角三角
7、形,那么称点P为点M、N的 “和谐点”.(1)已知点A的坐标为,若点B的坐标为,在直线AB的上方,存在点A,B的“和谐点”C,直接写出点C的坐标;点C在直线x=5上,且点C为点A,B的“和谐点”,求直线AC的表达式.(2)O的半径为,点D为点E、F的“和谐点”,若使得DEF与O有交点,画出示意图直接写出半径的取值范围.石景山28对于平面上两点A,B,给出如下定义:以点A或B为圆心, AB长为半径的圆称为点A,B的“确定圆”如图为点A,B 的“确定圆”的示意图 (1)已知点A的坐标为,点的坐标为, 则点A,B的“确定圆”的面积为_; (2)已知点A的坐标为,若直线上只存在一个点B,使得点A,B
8、的“确定圆”的面积为,求点B的坐标; (3)已知点A在以为圆心,以1为半径的圆上,点B在直线上, 顺义28如图1,对于平面内的点P和两条曲线、给出如下定义:若从点P任意引出一条射线分别与、交于、,总有是定值,我们称曲线与“曲似”,定值为“曲似比”,点P为“曲心” 例如:如图2,以点O'为圆心,半径分别为、(都是常数)的两个同心圆、,从点O'任意引出一条射线分别与两圆交于点M、N,因为总有是定值,所以同心圆与曲似,曲似比为,“曲心”为O' (1)在平面直角坐标系xOy中,直线与抛物线、分别交于点A、B,如图3所示,试判断两抛物线是否曲似,并说明理由; (2)在(1)的条件
9、下,以O为圆心,OA为半径作圆,过点B作x轴的垂线,垂足为C,是否存在k值,使O与直线BC相切?若存在,求出k的值;若不存在,说明理由; (3)在(1)、(2)的条件下,若将“”改为“”,其他条件不变,当存在O与直线BC相切时,直接写出m的取值范围及k与m之间的关系式西城28对于平面内的和外一点,给出如下定义:若过点的直线与存在公共点,记为点,设,则称点(或点)是的“相关依附点”,特别地,当点和点重合时,规定,(或)已知在平面直角坐标系中,的半径为(1)如图,当时,若是的“相关依附点”,则的值为_是否为的“相关依附点”答:_(填“是”或“否”)(2)若上存在“相关依附点”点,当,直线与相切时,
10、求的值当时,求的取值范围(3)若存在的值使得直线与有公共点,且公共点时的“相关依附点”,直接写出的取值范围丰台28对于平面直角坐标系xOy中的点M和图形,给出如下定义:点P为图形上一点,点Q为图形上一点,当点M是线段PQ的中点时,称点M是图形,的“中立点”如果点P(x1,y1),Q(x2,y2),那么“中立点”M的坐标为已知,点A(-3,0),B(0,4),C(4,0)(1)连接BC,在点D(,0),E(0,1),F(0,)中,可以成为点A和线段BC的“中立点”的是_;(2)已知点G(3,0),G的半径为2如果直线y = - x + 1上存在点K可以成为点A和G的“中立点”,求点K的坐标;(3
11、)以点C为圆心,半径为2作圆点N为直线y = 2x + 4上的一点,如果存在点N,使得轴上的一点可以成为点N与C的“中立点”,直接写出点N的横坐标的取值范围平谷28. 在平面直角坐标系xOy中,点M的坐标为,点N的坐标为,且,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”. (1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的最小内角为_;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)O的半径为,点P的坐标为(3,m) .若在O上存在一点Q ,使得以QP为边的“坐标菱形”为正方
12、形,求m的取值范围房山28. 在平面直角坐标系xOy中,当图形W上的点P的横坐标和纵坐标相等时,则称点P为图形W的“梦之点”.(1)已知O的半径为1. 在点E(1,1),F(,),M(2,2)中,O的“梦之点”为 ;若点P位于O内部,且为双曲线(k0)的“梦之点”,求k的取值范围.(2)已知点C的坐标为(1,t),C的半径为,若在C上存在“梦之点”P,直接写出t的取值范围.(3)若二次函数的图象上存在两个“梦之点”,,且,求二次函数图象的顶点坐标. 朝阳28. 对于平面直角坐标系中的点P和线段AB,其中A(t,0)、B(t+2,0)两点,给出如下定义:若在线段AB上存在一点Q,使得P,Q两点间
13、的距离小于或等于1,则称P为线段AB的伴随点(1)当t=3时,在点P1(1,1),P2(0,0),P3(-2,-1)中,线段AB的伴随点是 ;在直线y=2x+b上存在线段AB的伴随点M、N, 且MN,求b的取值范围;(2)线段AB的中点关于点(2,0)的对称点是C,将射线CO以点C为中心,顺时针旋转30°得到射线l,若射线l上存在线段AB的伴随点,直接写出t的取值范围顺义区28(1)是 过点A,B作x轴的垂线,垂足分别为D,C依题意可得A(k,k2),B(2k,2k2) 2分因此D(k,0),C(2k,0)ADx轴,BCx轴,ADBC两抛物线曲似,曲似比是 3分 (2)假设存在k值,
14、使O与直线BC相切则OA=OC=2k,又OD=k,AD=k2,并且OD2+AD2= OA2,k2+(k 2)2=(2k)2(舍负)由对称性可取综上, 6分 (3)m的取值范围是m1, k与m之间的关系式为k 2=m2-1 8分石景山28解:(1); 2分 (2)直线上只存在一个点,使得点的“确定圆”的面积 为, 的半径且直线与相切于点,如图, , 当时,则点在第二象限 过点作轴于点, 在中, 当时,则点在第四象限 同理可得 综上所述,点的坐标为或 6分朝阳28. 解:(1)线段AB的伴随点是: . 2分 如图1,当直线y=2x+b经过点(3,1)时,b=5,此时b取得最大值. 4分 如图2,当
15、直线y=2x+b经过点(1,1)时,b=3,此时b取得最小值. 5分 b的取值范围是3b5. 6分图2图1平谷区28解:(1)60;1 (2)以CD为边的“坐标菱形”为正方形, 直线CD与直线y=5的夹角是45° 过点C作CEDE于E D(4,5)或3 直线CD的表达式为或5 (3)或7西城区延庆区28(1)F 1分 (2) -33 且0 4分(3)4 < r5 7分大兴区28.(1)9 1分(2)方法一:MKMN,要使线段OC上存在不同的两点M1、M2,使相应的点K1、K2都与点F重合,也就是使以FN为直径的圆与OC有两个交点,即,又, 4分方法二:,点K在x轴的上方过N作N
16、WOC于点W,设,则 CWOCOW3,WM由MOKNWM,得, 当时,化为当=0,即,解得时,线段OC上有且只有一点M,使相应的点K与点F重合, 线段OC上存在不同的两点M1、M2,使相应的点K1、K2都与点F重合时,的取值范围为 4分(3)设抛物线的表达式为:(a0),又抛物线过点F(0,), 5分过点Q 做QGx轴与FN 交于点RFNx轴QRH=90°, 又,当时,可求出, 6分当时,可求出 7分的取值范围为 8分东城区28. 解:(1)C; -2分(2) 60°; MNE是等边三角形,点E的坐标为;-5分 直线交 y轴于点K(0,2),交x轴于点.,.作OGKT于点G
17、,连接MG.,OM=1.M为OK中点 . MG =MK=OM=1.MGO =MOG=30°,OG=., .又,.G是线段MN关于点O的关联点.经验证,点在直线上.结合图象可知, 当点F在线段GE上时 ,符合题意., .-8分xy丰台区28解:(1)点和线段的“中立点”的是点D,点F; 2分(2)点A和G的“中立点”在以点O为圆心、半径为1的圆上运动.因为点K在直线y=- x+1上,设点K的坐标为(x,- x+1),则x2+(- x+1)2=12,解得x1=0,x2=1. 所以点K的坐标为(0,1)或(1,0). 5分(3)(说明:点与C的“中立点”在以线段NC的中点P为圆心、xy半径
18、为1的圆上运动.圆P与y轴相切时,符合题意.)所以点N的横坐标的取值范围为-6xN-2. 8分海淀区28解(1)的反射点是, 1分设直线与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为,过点作轴于点,如图可求得点的横坐标为同理可求得点,的横坐标分别为,点是的反射点,则上存在一点,使点关于直线的对称点在上,则.,反之,若,上存在点,使得,故线段的垂直平分线经过原点,且与相交因此点是的反射点点的横坐标的取值范围是,或 4分(2)圆心的横坐标的取值范围是 7分怀柔区28. (1)P1(,0)、P2(0,2)2分如图, 在y=x+b上,若存在O的“特征点”点P,点O到直线y=x+b的距离m2.直线y=x+b1交y轴于点E,过O作OH直线y=x+b1于点H.因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度回迁房买卖合同附房屋权属证明协议3篇
- 2024年度家居建材行业委托代销售合作框架协议3篇
- 2024年度KTV包间软装设计与施工合同3篇
- 2024年境外房产质押合同样本2篇
- 2024年度环保型砌砖材料供货合同3篇
- 2024年度企业项目管理顾问合同3篇
- 2024年度园林景观绿化工程设施维护合同范本3篇
- 2024版国有企业财务预算编制合同十3篇
- 2024年度给排水安装工程分包合同正本(含设备采购)2篇
- 2024版土地征收补偿安置合同2篇
- 智慧酒店无人酒店综合服务解决方案
- 考研英语一新题型历年真题(2005-2012)
- 健身房会籍顾问基础培训资料
- 9脊柱与四肢、神经系统检查总结
- 秀场内外-走进服装表演艺术智慧树知到答案章节测试2023年武汉纺织大学
- 【高分复习笔记】王建《现代自然地理学》(第2版)笔记和课后习题详解
- TSGD0012023年压力管道安全技术监察规程-工业管道(高清晰版)
- SMM英国建筑工程标准计量规则中文 全套
- 2023-2024学年浙江省富阳市小学数学四年级上册期末通关题
- 2023-2024学年浙江省瑞安市小学数学三年级上册期末自测试题
- 完井基础知识
评论
0/150
提交评论