高中文科数学考点_第1页
高中文科数学考点_第2页
高中文科数学考点_第3页
高中文科数学考点_第4页
高中文科数学考点_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.高中文科数学考点 高中文科数学考点:常用的诱导公式公式一:设α为任意角,终边一样的角的同一三角函数的值相等:sin2kπ+α=sinα k∈Zcos2kπ+α=cosα k∈Ztan2kπ+α=tanα k∈Zcot2kπ+α=cotα k∈Z公式二:设α为任意角,&a

2、mp;pi;+α的三角函数值与α的三角函数值之间的关系:sinπ+α=-sinαcosπ+α=-cosαtanπ+α=tanαcotπ+α=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin-α=-sinαcos-α=cos&

3、;alpha;tan-α=-tanαcot-α=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sinπ-α=sinαcosπ-α=-cosαtanπ-α=-tanαcotπ-α=-cotα公式五:利用公式一和公式三可以

4、得到2π-α与α的三角函数值之间的关系:sin2π-α=-sinαcos2π-α=cosαtan2π-α=-tanαcot2π-α=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关

5、系:sinπ/2+α=cosαcosπ/2+α=-sinαtanπ/2+α=-cotαcotπ/2+α=-tanαsinπ/2-α=cosαcosπ/2-α=sinαtanπ/2-α=cotαcotπ/2-&

6、amp;alpha;=tanαsin3π/2+α=-cosαcos3π/2+α=sinαtan3π/2+α=-cotαcot3π/2+α=-tanαsin3π/2-α=-cosαcos3π/2-α=-sinαtan3π/2-&alph

7、a;=cotαcot3π/2-α=tanα以上k∈Z注意:在做题时,将a看成锐角来做会比较好做。高中文科数学考点:轨迹方程的求解轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性也叫做必要性;凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性也叫做充分性.【轨迹方程】就是与几何轨迹对应的代数描绘。一、求动点的轨迹方程的根本步骤建立适当的坐标系,设出动点M的坐标;写出点M的集合;列出方程=0;化简方程为最简形式;检验。二、求动点的轨迹方程的常

8、用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。定义法:假如可以确定动点的轨迹满足某种曲线的定义,那么可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标x0,y0所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种

9、求轨迹方程的方法叫做参数法。交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。*直译法:求动点轨迹方程的一般步骤建系建立适当的坐标系;设点设轨迹上的任一点Px,y;列式列出动点p所满足的关系式;代换依条件的特点,选用间隔 公式、斜率公式等将其转化为关于X,Y的方程式,并化简;证明证明所求方程即为符合条件的动点轨迹方程。高中文科数学考点:集合与函数1.进展集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进展求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与

10、复合命题有什么区别?四种命题之间的互相关系是什么?如何判断充分与必要条件?5.你知道“否命题与“命题的否认形式的区别.6.求解与函数有关的问题易忽略定义域优先的原那么.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间-a,a上单调递增,那么一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你纯熟地掌握了函数单调性的证明方法吗?定义法取值,作差,判正负和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪和“或;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。13.如何应用函数的单调性与奇偶性解题?比较函数值的大小;解抽象函数不等式;求参数的范围恒成立问题.这几种根本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?真数大于零,底数大于零且不等于1字母底数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论