混沌隔振系统幅值控制方法仿真研究_第1页
混沌隔振系统幅值控制方法仿真研究_第2页
混沌隔振系统幅值控制方法仿真研究_第3页
混沌隔振系统幅值控制方法仿真研究_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、混沌隔振系统幅值控制方法仿真研究摘 要 针对混沌隔振系统中振子幅值较大,难以实现工程应用的现状,本文提出了一种减小振子幅值的方法。仿真结果表明:通过附加质量块以及调整隔振器的参数,对原混沌隔振系统进行改进,可以将混沌系统幅值控制在某一比例范围之内,而基础的振动功率谱基本保持原混沌隔振状态。论文提出一套较完整的混沌隔振系统的设计方案,对混沌隔振系统的工程应用具有一定的参考意义。 关键词 混沌;隔振;幅值 中图分类号:O322 文献标识码:A 文章编号:16717597(2013)041-083-03 混沌振动时因为非线性隔振系统响应中出现的响应谐波比非混沌状态下更多,主谐波频率处的能量分散到各个

2、谐波处的能量也更多,也即混沌隔振对特征线谱的隔离效果要优于一般的线性隔振系统。要使得混沌隔振技术应用于实际的机械设备,必须同时具备三个条件:被隔振设备振动幅值较小、较好的整体隔振能力以及线谱隔离能力。但研究也发现,同时满足三个条件的难度较大,往往所设计的系统只具备良好的整体隔振和线谱隔离能力,却使振动幅值过大。因此,如何对混沌隔振系统进行改进,以满足工程应用是当前混沌隔振课题的重要研究方向。 本论文对非线性Duffing振动系统进行分析,通过参数变换,得到一个改进的混沌振动系统,新的系统不仅能基本保持原系统的隔振效果,而且振子的振幅也能得到有效的控制。研究结果表明,在工程应用中,只需要通过对被

3、隔振设备附加质量块和重新设计隔振器参数就能改进原混沌隔振系统,这种方法易于工程实现,对混沌隔振的工程应用具有一定的指导意义。 1 单自由度混沌振子幅值控制理论研究及仿真分析 单自由度Duffing方程可以用下式表示: (1) 是振子质量,是阻尼,和是Duffing系统的弹性力系数。假定此时系统已经处于混沌状态,而且有较好的整体隔振效果和线谱隔离能力,只是振动幅值较大,难以应用。此时可以假设一个新的系统,新系统的振子幅值是,大小为原系统的N分之一:。将含的表达式代入原方程得到: (2) 对原Doffing系统进行改进:通过附加质量块,使得新系统振子的质量为原来的M倍,将阻尼和弹性力系数分别设为,

4、和,新系统的振动方程为: (3) 此时振子的振幅为,如果方程(2)(3)中的参数满足这样的条件:,则两个方程等价,新系统振子振幅,为原系统的N分之一。 从上述的推导过程来看,只需要将原系统的质量增加N倍,重新设计隔振器,参数相应的变为原系统的和倍,就可以达到按比例控制振幅的目的。系统改进前后,基础受力分别为和: (4) 上式表示系统改进前后力的传递率没有改变,系统仍然具有原系统的隔振效果而幅值却降为原来的N分之一。 对单自由度Duffing系统进行幅值控制的数值仿真,设原系统为: (5) 系统参数为:,。如果要将幅值降为原来的一半,即,则新系统为: (6) 系统参数为:,用四阶龙格库塔方法仿真

5、,仿真步长为0.01 s,仿真时间为1000 s,取最后50 s系统改进前后的幅值作时间历程曲线。 图1 混沌系统改进前后位移时间历程曲线 由于系统是混沌状态的,前后仿真会出现数值误差,所以在时间历程图上两个系统并非完全按比例同步,但这并不重要,因为在混沌隔振系统中,最重要的是最大振幅,如果最大振幅过大,会造成机器对限位器的冲击,对装备造成损害。整个仿真过程,原系统的最大振幅为29.49,改进后系统最大振幅为14.74,最大振幅约降为原来的二分之一。根据以上的结论可知,对单自由度混沌隔振系统进行改进,可以按比例有效的控制振子的最大振幅,而保持原系统的力传递率。 一般情况下,弹性力系数比较好调整

6、,但阻尼系数一般不可能过大,以下仿真考虑系统改进前后,阻尼特性不变的情况下,振子幅值的改变。假设改进前后阻尼系数,其他参数不变,仿真系统时间历程曲线以及最大振幅。(图2) 最后50s时间历程曲线如图所示,在阻尼不改变的情况下,整个仿真过程中,改进后的系统最大幅值位15.01,比按比例改进阻尼的系统略高,这是因为阻尼有抑制振幅的作用。仿真结果表示:如果不能按比例提高阻尼,对系统减幅的影响也不大。 2 两自由度振子幅值控制仿真 在实际环境中,基础均为柔性结构,对于柔性基础,一般情况下可将其建模成为一个由线性弹簧、阻尼和质量块组成的单自由度模型。对两自由度振动系统建模,方程如下: (7) 其中,为基

7、础阻抗的参数,位移为。由上式可见,由于两自由度系统出现了耦合现象,故利用参数变换的方法对振动幅值进行推导很难实现。在此利用数值模拟的方法,直接采用单自由度系统改进的方法对两自由度模型进行改进,并对仿真的数据进行分析。 改进后的两自由度振动方程为: (8) 对原系统附加M-1倍的质量块,并对原隔振器重新设计,其中基础阻抗是由具体结构所决定的,一般不能改变。考虑不同的基础阻抗下,该方法对幅值的减小量以及对基础加速度功率谱密度的影响。 基础阻抗相对振动质量不大时,设原系统参数为:,基础阻抗参数为原系统的5倍:,。试图将幅值控制为原系统的1/2:和1/5:。仍然采用龙格库塔法,仿真步长为0.01 s,

8、仿真时间为2000 s。(图3图4) 图3 基础阻抗较小时原系统位移时间历程曲线 对图3、图4进行分析,由于系统进入混沌状态有一个暂态的过程,略去开始的500 s,对500 s至2000 s的振子幅值进行数值分析:原混沌系统振子的最大位移为24.0,N=5的新系统最大位移为7.83,原计划缩减为原系统的20%,仿真结果约为32.6%。可见,由于基础阻抗较小,两自由度产生强烈的耦合现象,使得单自由度幅值控制理论有一定的误差,但是振子的最大位移量仍旧能得到较大的改善。如果要将混沌隔振器实际应用起来,必须在限制机器振动幅值的同时,使得基础的加速度功率谱密度成为一个连续谱,这样的混沌隔振器才有工程应用

9、价值。因此,系统改进后,不仅要求振幅减小到预定要求,基础的加速度功率谱密度也不能有大的变化。 基础阻抗相对振动质量比较大时,设原系统参数为:,基础阻抗参数为原系统的20倍:,。试图将幅值控制为原系统的1/2:和1/5:。仍然采用龙格库塔法,仿真步长为0.01 s,仿真时间为2000 s: 图5 基础阻抗较大时原系统位移时间历程曲线 图6 基础阻抗较大时N=5新系统位移时间历程曲线 对图5、图6进行分析,略去开始的500 s的暂态过程,对500 s至2000 s的振子幅值进行数值分析:原混沌系统振子的最大位移为30.41,N=5的新系统最大位移为6.76,原计划缩减为原系统的20%,仿真结果约为

10、22.2%。可见,由于基础阻抗较大,两自由度之间的耦合不是那么强烈,使得单自由度幅值控制理论有较好的预测作用,振子的最大位移量得到较高精度的缩减。 基础阻抗相对振动质量很大时,设原系统参数为:,基础阻抗参数为原系统的100倍:,。试图将幅值控制为原系统的1/2:和1/5:。仍然采用龙格库塔法,仿真步长为0.01 s,仿真时间为2000 s。(图7图8) 对图7、图8进行分析,振子幅值进行数值分析结果为:原混沌系统振子的最大位移为28.79,N=5的新系统最大位移为5.79,原计划缩减为原系统的20%,仿真结果约为20.1%。可见,由于基础阻抗很大,两自由度之间的耦合基本可以忽略,使得单自由度幅

11、值控制理论有很好的预测作用,振子的最大位移量得到很高精度的缩减。 3 混沌隔振方案设计 本论文对混沌隔振系统进行改进的前提是:原混沌隔振系统已经具备良好的整体隔振能力和线谱隔离能力,只是振动幅度过大。应用该方法对混沌隔振系统重新改进,可以获得同时满足隔振要求并使得振子产生小振幅的新系统,由此可以提出一套比较完整的混沌隔振方案: 1)首先针对某一具体的设备,设计出一套具有良好整体隔振和线谱隔离能力的非线性隔振器。 2)对该混沌隔振系统进行数值仿真,检查被隔振设备的最大振幅是否超过了极限值。 3)如果小于极限值,可以认为该混沌隔振器设计满足要求。 4)如果超过极限值,可以根据本论文所提出的方案进行

12、改进。 5)改进后的系统不一定会再次呈现混沌状态,而无法隔离线谱,此时只能调整幅值缩减量N的值,直到最后达到混沌隔振的要求。 振幅缩减的比例应该根据实际情况来确定,一般只要使得最大振幅低于极限值即可,否则按照本论文所提方案,必须附加质量块来增加机械设备的质量,而实际情况不可能允许无限增加设备的质量。 4 结论 本文通过对单自由度混沌隔振系统的理论分析,得到了在保持隔振效果的同时,能有效缩减振动幅值的方法。将该方法用于两自由度系统,并通过数值仿真得到以下结果:基础阻抗较小的情况下,振幅的实际减小幅度和理论值有一定的偏差,但是基础加速度功率谱密度进一步得到了降低;随着基础阻抗的增加,幅值缩减的精度

13、越来越高,而改进后基础的加速度功率谱密度始终没有明显的改变。说明该方法在有效的减小混沌隔振系统幅值的同时,有效的保留了原系统良好的隔振效果。仿真结果也表示,基础阻抗满足一定的较大值时,振动幅值就能得到按比例较精确的减小,而不要求基础阻抗极大。在第四节,基于本论文所提方法,提出了一套较完整的混沌隔振方案,对混沌隔振的实际应用有一定的指导意义。本方法也有两个不足之处: 1)该方案要求通过增加被隔振设备的质量来达到小幅振动,对于大型的船用机械设备而言,实际环境限制了该方法的应用; 2)由于两自由度分析困难,其改进方案是直接从单自由度照搬过来,有些情况下,改进后的两自由度系统混沌特性消失,而不能有效的隔离线谱,所以进一步对两自由度系统进行深入研究仍然具有重要意义。 参考文献 1张振海,朱石坚,何其伟.基于反馈混沌化方法的多线谱控制技术研究J.振动工程学报,2012(1):30-37.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论