版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、偏导数与高阶偏导数一、偏导数的定义及其计算法一、偏导数的定义及其计算法00yyxxxz ,00yyxxxf ,00yyxxxz 或或),(00yxfx.偏导数的概念可以推广到二元以上函数偏导数的概念可以推广到二元以上函数如如 在在 处处 ),(zyxfu ),(zyx,),(),(lim),(0 xzyxfzyxxfzyxfxx ,),(),(lim),(0yzyxfzyyxfzyxfyy .),(),(lim),(0zzyxfzzyxfzyxfzz 例例 1 1 求求 223yxyxz 在在点点)2, 1(处处的的偏偏导导数数解解 xz;32yx yz.23yx 21yxxz,82312 2
2、1yxyz.72213 例例 2 2 设设yxz )1, 0( xx, 求求证证 zyzxxzyx2ln1 .证证 xz,1 yyx yz,ln xxyyzxxzyx ln1xxxyxyxyylnln11 yyxx .2z 原结论成立原结论成立例例 3 3 设设22arcsinyxxz ,求,求xz ,yz .解解 xz xyxxyxx2222211322222)(|yxyyyx .|22yxy |)|(2yy yz yyxxyxx222221132222)()(|yxxyyyx yyxx1sgn22 )0( y00 yxyz不存在不存在例例 4 4 已知理想气体的状态方程已知理想气体的状态方
3、程RTpV (R为常数) ,求证:为常数) ,求证:1 pTTVVp.证证 VRTp;2VRTVp pRTV;pRTV RpVT;RVpT pTTVVp2VRT pR RV . 1 pVRT ).0, 0(),0, 0(,),(,yxffxyyxfz求求设设例例如如 有关偏导数的几点说明:有关偏导数的几点说明:、 求分界点、不连续点处的偏导数要用求分界点、不连续点处的偏导数要用定义求;定义求;解解xxfxx0|0|lim)0 , 0(0 0 ).0 , 0(yf 、偏导数存在与连续的关系、偏导数存在与连续的关系例例如如,函函数数 0, 00,),(222222yxyxyxxyyxf,依依定定义
4、义知知在在)0 , 0(处处,0)0 , 0()0 , 0( yxff.但函数在该点处并不连续但函数在该点处并不连续. 偏导数存在偏导数存在 连续连续.一元函数中在某点可导一元函数中在某点可导 连续,连续,多元函数中在某点偏导数存在多元函数中在某点偏导数存在 连续,连续,4、偏导数的几何意义、偏导数的几何意义,),(),(,(00000上上一一点点为为曲曲面面设设yxfzyxfyxM 如图如图几何意义几何意义: :),(22yxfxzxzxxx ),(22yxfyzyzyyy ),(2yxfyxzxzyxy ),(2yxfxyzyzxyx 函函数数),(yxfz 的的二二阶阶偏偏导导数数为为纯
5、偏导纯偏导混合偏导混合偏导定义:二阶及二阶以上的偏导数统称为高阶定义:二阶及二阶以上的偏导数统称为高阶偏导数偏导数.二、高阶偏导数二、高阶偏导数例例 5设设13323 xyxyyxz,求求22xz 、xyz 2、yxz 2、22yz 及33xz .解解xz ,33322yyyx yz ;9223xxyyx 22xz ,62xy 22yz ;1823xyx 33xz ,62y xyz 2. 19622 yyxyxz 2, 19622 yyx原函数图形原函数图形偏导函数图形偏导函数图形偏导函数图形偏导函数图形二阶混合偏二阶混合偏导函数图形导函数图形观察上例中原函数、偏导函数与二阶混合偏导观察上例中
6、原函数、偏导函数与二阶混合偏导函数图象间的关系:函数图象间的关系:例例 6 6 设设byeuaxcos ,求求二二阶阶偏偏导导数数.解解,cosbyaexuax ;sinbybeyuax ,cos222byeaxuax ,cos222byebyuax ,sin2byabeyxuax .sin2byabexyuax 定定理理 如如果果函函数数),(yxfz 的的两两个个二二阶阶混混合合偏偏导导数数xyz 2及及yxz 2在在区区域域 D D 内内连连续续,那那末末在在该该区区域域内内这这两两个个二二阶阶混混合合偏偏导导数数必必相相等等问题:问题:混合偏导数都相等吗?具备怎样的条件才混合偏导数都相
7、等吗?具备怎样的条件才相等?相等?例例 6 6 验验证证函函数数22ln),(yxyxu 满满足足拉拉普普拉拉斯斯方方程程. 02222 yuxu解解),ln(21ln2222yxyx ,22yxxxu ,22yxyyu ,)()(2)(222222222222yxxyyxxxyxxu .)()(2)(222222222222yxyxyxyyyxyu 22222222222222)()(yxyxyxxyyuxu . 0 若函数若函数),(yxf在 点在 点),(000yxP连连续,能否断定续,能否断定),(yxf在点在点),(000yxP的偏导数必定存在?的偏导数必定存在?思考题思考题思考题解
8、答思考题解答不能不能.,),(22yxyxf 在在)0 , 0(处处连连续续,但但 )0 , 0()0 , 0(yxff 不不存存在在.例如例如,一一、 填填空空题题: :1 1、 设设yxztanln , ,则则 xz_ _ _ _ _ _ _ _ _; ; yz_ _ _ _ _ _ _ _ _ _. .2 2、 设设 xzyxezxy则则),(_ _ _ _ _ _ _ _; ; yz_ _ _ _ _ _ _ _ _. .3 3、 设设,zyxu 则则 xu_ _ _ _ _ _ _ _ _ _ _; ; yu_ _ _ _ _ _ _ _ _ _ _; ; zu_ _ _ _ _ _
9、 _ _ _ _ _ _ _. .4 4、 设设,arctanxyz 则则 22xz_ _ _ _ _ _ _ _ _; ; 22yz_ _ _ _ _ _ _ _; ; yxz2_ _ _ _ _ _ _ _ _ _ _ _ _. . 练练 习习 题题 5 5、设、设zyxu)( , ,则则 yzu2_. .二、二、 求下列函数的偏导数求下列函数的偏导数: : 1 1、yxyz)1( ; 2 2、zyxu)arctan( . .三、三、 曲线曲线 4422yyxz, ,在点在点(2,4,5)(2,4,5)处的切线与正向处的切线与正向x轴所成的倾角是多少轴所成的倾角是多少? ?四、四、 设设xyz , ,求求.,22222yxzyzxz 和和五、设五、设)ln(xyxz , ,求求yxz 23和和23yxz . .六、六、 验证验证: : 1 1、)11(yxez , ,满足满足zyzyxzx222 ; 2 2、222zyxr 满足满足 rzzryrxr 222222. .七、设七、设 0, 00,arctanarctan),(22xyxyyxyxyxyxf 求求xyxff ,. . 2 2、zzyxyxzxu21)(1)( , , ,)(1)(21zzyxyxzyu zyxyxyxzu2)(1)ln()( . .三、三、4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 有关工作个人述职报告集锦7篇
- 会计辞职申请书(集合15篇)
- 简短的下半年工作计划
- 护士长个人工作计划
- 质量工作计划
- 小学二年级下册数学教学工作计划
- 《雾都孤儿》读书笔记-15篇
- 政府绩效评估 教案 (蔡立辉) 第1-4章 导论 -政府绩效评估系统过程及方法
- 子宫内膜癌-妇产科教学课件
- 《自觉遵守法律》课件
- Unit2HowoftendoyouexerciseSectionA(1a-2d)教案人教版英语八年级上册
- 光伏电站事故处理规程
- 山东专升本计算机-演示文稿软件-Powerpoint-2010课件(新版考试大纲)
- 论海澜之家存货管理的问题、成因及其对策
- 医院长期医嘱单(模板)
- 亲子鉴定内容 报告书范本
- 【课件】洋流教学课件高中地理人教版(2019)选择性必修1
- 初二化学上册知识点7篇
- 汽车保养与维护
- 2023-2024学年贵州省黔西南布依族苗族自治州贞丰县三年级数学第一学期期末经典模拟试题含答案
- 社区服务中心
评论
0/150
提交评论