变量之间的关系最新典型习题_第1页
变量之间的关系最新典型习题_第2页
变量之间的关系最新典型习题_第3页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、变量之间的关系2知识点1自变量与因变量的区别与联系联系:两者都是某一变化过程中的变量,两者因研究的侧重点或先后顺序不同可以互相转 化,比方当路程一定时,路程随时间的变化而变化,这时速度为自变量,时间为因变量。 而当速度一定时,路程随时间的变化而变化,这时时间是自变量,路程是因变量。区别:因变量随自变量的变化而变化。【典型例题】例1:某河受暴雨袭击,某天此河水的水位记录如下表:时间/时04812162024水位/米22.5345681上表反映了哪两个变量的关系?自变量和因变量各是什么?212时,水位是多高?3哪一段水位上升最快?【练习】1.某电影院地面的一局部是扇形,座位按以下方式设置:排数12

2、34座位数60646872(1)上述哪些量在变化?自变量和因变量分别是什么?(2)第5排、第6排各有多少个座位? 第n排有多少个 座位?请说明你的理由。2、父亲告诉小明:“距离地面越远,温度越低',小明并且出示了下面的表格:距离地面 高度/千米012345温度/ c201482-410根据上表,父亲还给小明出了下面几个问题,你和小明一起答复:1上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?2如果用h表示距离地面的高度,用 t表示温度,那么随着 h的变化,t如何变化?3你知道距离地面 5千米的高空温度是多少吗?4你能预测出距离地面 6千米的高空温度是多少吗?3、某地有A,

3、B,两种出租车,其行驶路程与费用关系如下表路程/千米1234567A费用/元10101010101112B费用/元7779.411.8014.2016.601此题中如果用x表示路程,y表示费用,哪个是自变量,哪个是因变量? x> 5千米后, 随着x的增大,y的变化趋势是什么?2B种出租车从3千米以后起,路程每增加 1千米,费用怎么样变化?3预测路程为10千米时,两种车费各是多少?4当行驶为4千米时,你选择坐那种车?行驶路程为8千米时,你选择坐那种车?4. 一个弹簧不挂物体时,长12厘米,挂上1千克物体后,弹簧总长12+0.5厘米,?挂上2千克物体后,弹簧总长12+0.5 X 2厘米,挂上

4、3千克物体后,弹簧总长12+0.5 X 3 厘米1上述哪些量在发生变化?自变量是什么?因变量又是什么?2请把挂上物体后,弹簧的长度变化情况填入下表:物重/千克0123456弹簧长度/厘米3根据表格中的数据,总结弹簧的长度是怎样随物重的变化而变化的?4估计一下挂上10千克物体后,弹簧的长度是多少?你是如何估计的?5变式、在弹簧限度,弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如下表:所挂物体的质量/千克012345678弹簧的长度/cm1212.51313.51414.51515.516弹簧不挂物体时的长度是多少?如果用x表示弹性限度物体的质量,用y表示弹簧的长度,那么随着x的变化,y的变

5、化趋势如何?写出y与x的关系式.如果此时弹簧最大挂重量为25千克,你能预测当挂重为14千克时,弹簧的长度是多少?6.声音在空气中传播的速度 y米/秒简称音速与气温 xC之间的关系如下:气温xC05101520音速y米/秒331334337340343从表中可知音速y随温度x的升高而.在气温为20 C的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,那么由此可知,这个人距发令地点 米。7、A ABC勺底边BC= 8 cm,当BC边上的高线从小到大变化时,ABC勺面积也随之变化.(1)在这个变化过程中,自变量和因变量各是什么?(2) ABC的面积y(cm2)与高线x(cm)的关系式是什么

6、? 用表格表示当 x由5 cm变到10 cm时(每次增加1cm), y的相应值.(4)当x每增加1 cm 时,y如何变化?知识点2:用图像表示变量之间的关系:注意:1.水平方向数轴上的点表示自变量,竖直方向数轴上的点表示因变量;2. 理解图像特殊点、特殊线段的实际意义:速度随时间的变化A、B、C D四个图象,1、汽车速度与行驶时间之间的关系可以用图象来表示,以下列图中 可以分别用一句话来描述:1在某段时间里,速度先越来越快,接着越来越慢。2在某段时间里,汽车速度始终保持不变。3在某段时间里,汽车速度越来越快。4在某段时间里,汽车速度越来越慢。速度速度速度速度2、星期天晚饭后,小红从家里出发去散

7、步, 以下列图描述了她散步过程中离家的距离 s米 与散步所用的时间t分之间的关系,依据图象,下面描述符合小红散步情景的是 A. 从家出发,到了一个公共阅读报栏,看了一会儿报,就回家了 .B. 从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段后,然后回家了.C. 从家里出发,一直散步没有停留,然后回家了D. 从家里出发,散了一会儿步,就找同学去了,18分钟后才开场返回.3. 如图,是甲、乙两人从 A地往B地的路程与时间的关系图1A、B两地相距km2甲的平均速度为 km/h乙的平均速度为 km/h3甲比乙早出发小时4谁早到B地,早到多少时间?5根据以上条件,请列出方程,求出乙出发多少时

8、间追上甲?4、如图6- 11,表示一骑自行车者与一骑摩托车者沿一样路线由甲地到乙地行驶过程的图 象,两地间的距离是 100千米,请根据图象答复或解决下面的问题1谁出发的较早?早多长时间?谁到达乙地早?早到多 长时间?2两人在途中行驶的速度分别是多少?3指出在什么时间段两车均行驶在途中;在这段时间, 自行车行驶在摩托车前面; 自行车与摩托车相遇; 行车行驶在摩托车后面?5. 2021?模拟如图,I a, I b分别表示A步行与B骑车在同一路上行驶的路程 S与时间t 的关系.1B出发时与A相距千米.2走了一段路后,自行车发生故障,进展修理,所用的时间是小时.3B出发后小时与 A相遇.4假设B的自行

9、车不发生故障,保持出发时的速度前进,小时与 A相遇.6. 2007?丨如下列图的函数图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小明离他家的距离,那么小 明从学校回家的平均速度为千米/小时.7、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时 间为x(h),两车之间的距离为 y(km),图中的折线表示 y与x之间的函数关系,根据图像 进展以下探究,1、甲、乙两地之间的距离为km2、请解释图中B点的意义:(3)、求慢车和快车的速度,4、求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值围;5、假设第二列快车也冲甲地出发

10、驶往乙地,速度与第一列快车一样,在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇,求第二列快车比第一列快车晚出发多少小 时?8 2021?模拟如图,甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶,甲车先到达B地,在B地停留1小时后,沿原路以另一个速度匀速返回,假设干时间后与乙 车相遇,乙车的速度为每小时60千米.如图是两车之间的距离y千米、与乙车行驶的时间x小时、之间函数的图象,那么甲车返回的速度是每小时千米.9. 一辆汽车油箱有油 48升,从某地出发,每行1 km,耗油0.6升,如果设剩油量为y升, 行驶路程为x千米1上述的哪些量发生变化?自变量是?因变量是?2、写出y与x的关系

11、式;3、用表格表示汽车从出发地行驶10km 20km 30km、40km 50km时的剩油量;4根据表格中的数据 说明剩油量是怎样随着 路程的改变而变化的;5、这辆汽车行驶35km时,剩油多少升?汽车剩油12升时, 行驶了多少千米?(6)请你估计这车辆在中途不加油的情况下最远能运行多少千米?10变式.某机动车辆出发前油箱中有油42升,行驶假设干小时后,在途中加油站加油假设干.油箱中余油量 Q(升)与行驶时间t(时)之间的关系如图,请根据图像填空:“ Q/升机动车辆行驶了小时后加油.中途加油升加油后油箱中的油最多可行驶小时如果加油站距目的地还有 230公里,机动车每小时走 40 公里,油箱中的油

12、能否使机动车到达目的地?答:。、高度深度与时间的变化1如图是某蓄水池的横断面示意图,分深水区和浅水区,如果这个蓄水池以固定的流量注水,下面哪个图象能大致表示水的最大深度h和时间t之间的关系?()AB2、如图:向放在水槽底部的烧杯注水 流量一定注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度与注水时间之间的关系大致是以下列图象中的中考真题1 2021?丨甲、乙两人在一次百米赛跑中,路程s米与赛跑时间t秒的关系如下 图,那么以下说确的是A.甲、乙两人的速度一样 B.甲先到达终点 C.乙用的时间短 D.乙 比甲跑的路程多2、 2021?潍坊用固定的速度如下列图形状的杯子里注水,那么能表示杯子里

13、水面的高度 和注水时间的关系的大致图象是A. B. C. D.3、 2021?丨均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如下列图,那么这个瓶子的形状是以下的A. B. C. D.4、 2021?黄冈一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为 150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,那么图中折线大致表示两车之间的距离y千米与快车行驶时间小时之间的函数图象是5、 2021?丨如图是我国古代计时器“漏壶'的示意图,在壶盛一定量的水,水从壶底的小孔漏出壶壁画有刻度,人们根据壶中

14、水面的位置计时,用x表示时间,y表示壶底到水面的高度,那么y与x的函数关系式的图象是A. B. C. D.6、 2021?丨如图,是一对变量满足的函数关系的图象,有以下3个不同的问题情境:小明骑车以400米/分的速度匀速骑了 5分,在原地休息了 4分,然后以500米/分的速 度匀速骑回出发地,设时间为x分,离出发地的距离为 y千米;有一个容积为 6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶的水量为y升;矩形ABCD中, AB=4,BC=3,动点P从点A出发,依次沿对角线 AC边CD边DA运动至点A停止,设点P的运 动路程为x,当点P与点A不重合时,y=SAABP当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为A. 0B. 1C. 2D. 37、 2021?丨某书定价25元,如果一次购置 20本以上,超过20本的局部打八折,试写出 付款金额y单位:元与购书数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论