全等三角形 (3)_第1页
全等三角形 (3)_第2页
全等三角形 (3)_第3页
全等三角形 (3)_第4页
全等三角形 (3)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、全等三角形导学案备课时间201( 3 )年( 9 )月( 1 )日 星期( 日 )学习时间201( 3 )年( 10 )月( 6 )日 星期( )学习目标1、了解全等形及全等三角形的概念。2、理解掌握全等三角形的性质。3、能够准确认知全等三角形的对应元素。4、在图形变换以用操作的过程中发展空间观念,培养几何直觉。5、在观察发现生活中的全等形和实际操作中获得全等三角形的体验。6、在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。学习重点探究全等三角形的性质学习难点掌握两个全等三角形的对应边、对应角的寻找规律,迅速正确指出两个全等三角形的对应元素。学具使用多媒体课件、小黑板、彩粉笔、三角板等

2、学习内容学习活动设计意图一、创设情境独立思考(课前20分钟)1、阅读课本P31 32 页,思考下列问题: (1)什么是全等三角形?对应顶点、对应边、对应角。(2)全等等三角形有哪些性质2、独立思考后我还有以下疑惑:全等三角形导学案学习活动设计意图二、答疑解惑我最棒(约8分钟)甲:乙:丙:丁:同伴互助答疑解惑三、合作学习探索新知(约15分钟)1、小组合作分析问题2、小组合作答疑解惑3、师生合作解决问题(1)观察下列图案,指出这些图案中形状与大小相同的图形(2)你能发现这两个三角形有什么美妙的关系吗?答:这两个三角形是完全重合的(3)学生自己动手(同桌两名同学配合)全等三角形导学案学习活动设计意图

3、(4)获取概念让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号形状与大小都完全相同的两个图形就是全等形要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同概括全等形的准确定义:能够完全重合的两个图形叫做全等形请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义仔细阅读课本中“全等”符号表示的要求(5)将ABC沿直线BC平移得DEF;将ABC沿BC翻折180°得到DBC;将ABC旋转180°得AED全等三角形导学案学习活动设计意图议一议:各图中的两个三角形全等吗?不难得出:ABCDEF,ABCDB

4、C,ABCAED(注意强调书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略得到全等三角形的性质:全等三角形的对应边相等 全等三角形的对应角相等根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素常用方法有:全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角四、归纳总结巩固新知(约15分钟)1、知识点的归纳总结:(1)能够完全重合的两个图形叫做全等形

5、全等三角形导学案学习活动设计意图(2)能够完全重合的两个三角形叫做全等三角形(3)全等三角形的对应边相等 全等三角形的对应角相等2、运用新知解决问题:(重点例习题的强化训练)例1如图,OCAOBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角问题:OCAOBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?将OCA翻折可以使OCA与OBD重合因为C和B、A和D是对应顶点,所以C和B重合,A和D重合C=B;A=D;AOC=DOBAC=DB;OA=OD;OC=OB总结:两个全等的三角形经过一定的转换可以重合一般是平移、翻转、旋转的方法例2如图,已知ABEACD,ADE=

6、AED,B=C指出其他的对应边和对应角全等三角形导学案学习活动设计意图例3已知如图ABCADE,试找出对应边、对应角(由学生讨论完成)借鉴例2的方法,可以发现A=A,在两个三角形中A的对边分别是BC和DE,所以BC和DE是一组对应边而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了再根据对应边所对的角是对应角可得B与D是对应角,ACB与AED是对应角所以说对应边为AB与AD、AC与AE、BC与DE对应角为A与A、B与D、ACB与AED做法二:沿A与BC、DE交点O的连线将ABC翻折180°后,它正好和ADE重合这时就可找到对应边为:AB与AD、AC与AE、BC与DE对应角为A与A、B与D、ACB与AED【练习】(1)课本P32页练习(2)课本P33页习题12.1第14题五、课堂小测(约

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论