




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、四、计算题1.一个垄断者在一个工厂中生产产品而在两个市场上销售,他的成本曲线和两个市场的需求曲线方程分别为:TG=(Q+Q)2+10(Q+Q);Q=32-0.4PI;Q=18-0.1P2(TC:总成本,Q,Q:在市场1,2的销售量,R,以试场1,2的价格),求:(1)厂商可以在两市场之间实行差别价格,计算在利润最大化水平上每个试场上的价格,销售量,以及他所获得的总利润量R答案:Q=8,Q2=7,P1=60,B=110,利润为875。(2)如果禁止差别价格,即厂商必须在两市场上以相同价格销售。计算在利润最大化水平上每个市场上的价格,销售量,以及他所获得的总利润R答案:P=70,Q=4,Q=11,
2、禾I润为675。2.某垄断厂商在两个市场上出售其产品,两个市场的需求曲线分别为:市场1:q1=a1-b1p1;市场2:q2=a2-b2P2。这里的q1和q2分别是两个市场上的销售量,P1和p2分别是两个市场上索要的价格。该垄断企业的边际成本为零。注意,尽管垄断厂商可以在两个市场上制定不同的价格,但在同一市场上只能以同一价格出售产品。(1)参数a1、b1、a2、b2在什么条件下,该垄断厂商将不选择价格歧视?b1b2(2)现在假定市场需求函数为qi=Api5(i=1,2),同时假定该垄断厂商的边际成本MC0且不变。那么,在什么条件下该垄断厂商的最优选择不是价格歧视?答案:b1=b231某竞争行业所
3、有厂商的规模都相等,都是在产量达到500单位时达到长期平均成本的最低点4元,当用最优的企业规模生产600单位产量时,每一个企业的短期平均成本为4.5元,市场需求函数为Q=70000-5000P,供给函数为Q=40000+2500,求解下列问题:(1)市场均衡价格是多少?该行业处于短期均衡还是长期均衡?由均衡条件知:70000-5000P=4000计2500P解得:p=4,Q=50000均衡价格与长期平均成本的最低点相等,故处于长期均衡。答案:4元,处于长期均衡。(2)当处于长期均衡时,该行业有多少厂商?n=50000/500=100答案:100家(3)如果市场需求变化为Q=100000-500
4、0P,求行业与厂商新的短期均衡价格与产量, 在新的均衡点,厂商盈利还是亏损?由均衡条件知:100000-5000P=40000+2500P得均衡价格P=8元,Q=60000每个厂商q=60000/100=600此时厂商的短期平均成本为4.5元,所以厂商盈利(84.5)。答案:8元,产量为600单位,盈利。4.某消费者的效用函数有U=XV,他会把收入的多少用于商品Y上?假设商品X的价格为Px,商品Y的价格为R,收入为肌由U=xy4得:=y4,更=4xy3。他对x和y的最佳购买的条件是,;:xfyMUR=MVPy即为:y-xy-PxPy1变形得,Pxx=Pyy41把 Px-x=Py-y代入预算万程
5、Pxx+Pyy=M41 -Py-yPy-y=M4一 4 一Pyy=-M5这就是说,他收入中有4用于购买商品丫。5答案:4/5的收入5.已知某垄断者的成本函数为TG=0.5C2+10Q产品的需求函数为P=90-0.5Q计算利润为极大的产量,利润和价格。TC=0.5Q+10Q对TC求导,得MC=Q+10;AR=P=90-0.5Q,则TR=AR*Q=90Q-0.5Q对TR求导,得MR=90-Q;令MC=M,R得Q=40,进而P=70,L=1600答案:产量为40,价格为70,利润为16006 .已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数LTQQ二Q-8Q+30Q(1)求该行业长期均衡时
6、的价格和单个厂商的产量。LAC(Q=LTC(Q)/Q=(Q3-8Q+30Q)/Q=Q2-8Q+30令如但:0,即有:dQdLAC(Q)=2Q-8=0,=解得Q=4dQ2且R=20dQ2解得Q=4,所以Q=4是长期平均成本最小化的解。以Q=4代入LAC(Q),得平均成本的最小值为:LAC=4_8X4+30=14由于完全竞争行业长期均衡时的价格等于厂商的最小的长期平均成本,所以,该行业长期均衡时的价格P=14,单个厂商的产量Q=4(2)求市场的需求函数为Q=8705P时,行业长期均衡时的厂商数目。由于完全竞争的成本不变行业的长期供给曲线是一条水平线, 且相应的市场长期均衡价格是固定的,它等于单个厂
7、商的最低的长期平均成本,所以,市场的长期均衡价格固定为P=14以P=14代入市场需求函数Q=870-5P,便可以得到市场的长期均衡数量为Q=870-5X14=800o现已求得在市场实现长期均衡时,市场均衡数量Q=800单个厂商白均衡产量Q=4,于是,行业长期均衡时的厂商数量=800+4=200(家)。7 .两个捕鱼企业的成本函数为:C(qi)=Qqi(i=1,2),其中 Q=q+q2。已知市场上鱼的价格恒定为P。求:(1)当实现纳什均衡时,两家企业的捕鱼量和利润;答案:捕鱼量均为P/3;利润均为P2/9O(2)若两家企业合并成一家,那么捕鱼量和利润又是多少?答案:捕鱼总理为P/2;利润总量为P
8、/4。8.一个垄断厂商拥有两个工厂,两工厂的成本函数分别为:工厂1,TC=5+9QI+Q:;工厂2,TC=4+10Q2+0.5Q2;市场的需求曲线为 P=31Q,求总产量、 产品价格以及各个工厂的生产数量。答案:总产量为8,价格为23,Q=3,Q=5。9.厂商的生产函数为Q=24L13K23,生产要素L和K的价格分别为6=4,r=8。求厂商的长期成本函数。因为Q=24L/3K2/3,所以MP=8L-2/3K2/3,MP=16L1/3K1/3带入生产者均衡条件MP/PL=MR/Pk,得L=KC=4L+8K=12LQ=24ll/3K2/3=24L,L=1/24QC=12L=1/2Q1长期成本函数为
9、CQ210.已知某完全竞争行业中的单个厂商的短期成本函数为C=0.1C3-2d+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润。因为STC=0.1d2Q2+15Q+10所以SMC=STC=0.3Q3-4Q+15dQ根据完全竞争厂商实现利润最大化原则P=SMC且已知P=55,于是有:2_0.3Q-4Q+15=55整理得:0.3Q2-4Q-40=0.,.-.*解得利润最大化的产量Q=20(负值舍去了)*-以Q=20代入利润等式有:答案:当P5时,无供给;答案:当P15时,Q=0.5+11.在偏远小镇上,某企业是当地劳动力的唯一雇主。该企业对劳动力的需求函数为WM
10、2-2L,劳动的供应函数为W=2L0(1)该企业的边际劳动成本是多少?劳动供应的总成本=2L2,边际成本=4L=TR-STC=PQ-STC=(55X20)-(0.1X203-2X202+15X20+10)=1100-310=790,、-*一一、即厂冏短期均衡的产量Q=20,禾I润JI=790答案:产量为20,禾打闰为790。(2)当市场价格下降为多少时,厂商必须停止生产?当市场价格下降为P小于平均可变成本AVC即PMAVC时,厂商必须停产而此时的价格P必定小于最小的可变平均成本AVCAVC=TVC0.1Q3-2Q215Q20-QQ5Q=0.1Q-2Q+15QQ令dAVC=0,即有:dAVC=0
11、.2Q2=0dQ解得Q=10.2-且dAVC=0.2一0dQ2故Q=10时,AVC(Q)以Q=10代入AVC(QdQ达最小值。有:最小的可变平均成本AVC=0.1X102-2X10+15=5于是,当市场价格P5时,厂商必须停产答案:下降到5元;(3)厂商的短期供给函数。根据完全厂商短期实现利润最大化原则P=SMC有:0.3Q2-4Q+15=p整理得0.3Q2-4Q+(15-P)=04-.16-1.2(15-P)解得Q=0.6根据利润最大化的二阶条件-4.1.2P-2Q=0.6MRMC的要求,取解为:该厂商的短期供给函数Q=4缶一2,0.6Q=0PQ=f(P)P-55P至 5 寸才生产,而P5时
12、必定会停产,所以,为:答案中有根号答案:边际成本为4L。(2)该企业将雇佣多少劳动?工资率是多少?4L=12-2L,L=2,W=2L=4答案:雇用2个;工资率为4;12.假设某企业为其产品和要素市场上的完全垄断者,其生产函数为Q=2L,其中L为生产中使用的劳动力数量。 若该企业的需求函数为Q=110-P,劳动的供给函数为L=0.5W20O求生产者的产量为多少?在此产量下,劳动使用量L,商品价格P和工资W各为多少?答案:Q=30,P=80,L=15,W=70.13.双寡头垄断企业的成本函数分别为:G=20Q,G=2C2,市场需求曲线为P=400-2Q,其中Q=Q+Q(1)求出古诺均衡下的产量、价
13、格和利润;答案:Q1=80,Q2=30,P=180,m=12800,*=3600。(2)求出斯塔克博格模型下的产量、价格和利润优生-280-80答案:Q1=,Q2=,P=160,n13314.某甲拥有财富100万元,明年他有可25%勺可能性会丢失一辆价值36万元的小汽车,假设他的效用函数为 U=、W,W为他的财富。请解答以下问题:(1)如果他不参加明年的保险,他的期望效用是多少?EU=25%(100-36)1/2+75% 1001/2=0.25-8+0.75-10=9.5(2)如果他参加保险,他最多愿意支付多少保险费用?设保险费为R,则(100-R)1/2=9.5得R=9.75即最多愿意支付9
14、.75万元的保险费。3215.完全竞争行业中某厂商的成本函数为STC=Q-6Q+30Q+40,成本用美元计算,假设产品价格为66美元。(1)求利润极大时的产量及利润总额;32厂商的成本函数为TC=Q-6Q30Q4022贝(JMC=3Q12Q30,又知P=66元。22根据利润极大化的条件P=MC有:66=3Q一12Q30,解得:Q=6Q=-2(舍去)。32_39200_25600,H2=o最大利润为:n=TR-TC=pQ-(Q-6Q+30Q+40)=176(元)(2)由于竞争市场供求发生变化,新的均衡价格为30美元,在新的价格水平下,厂商是否会发生亏损?如果会,最小的亏损额是多少?由于市场供求发
15、生变化,新的价格为P=30元,厂商是否发生亏损要根据P=MC所决定的均衡产量计算利润为正还是为负。均衡条件都为P=MC即 30=3Q212Q2+30,则Q=4或Q=0(舍去)o此时利润:=TR-TC=PQ-(Q3-6Q230Q40)-一 8可见,当价格为30元时,厂商会发生亏损,最小亏损额为8元。(3)该厂商在什么情况下才会退出该行业?由 TC=Q3-6Q230Q40得:TVC-Q3-6Q230Q七TVC-有:AVC=Q2-6Q30Q令些=0,即庄=2Q.6=0,dQdQ解得:Q=3当Q=3时AVC=21,可见只要价格P21,厂商就会停止生产。16 .已知成本函数为 C(Q)=Q2+5Q+4,
16、求厂商的供给函数和利润函数17.一个企业的生产函数为 Q=Q(XI, X2, Xn),Q 为产出, Xi为投入的第i种要素的数量。(1)用数学方法给出该企业处于规模报酬递增的表达;(2)证明:把该规模报酬递增的企业一分为二,产出之和小于原来产出18.假定两个具有相同偏好的人同居一室,他们的效用来自看电视的时间x与所吃的零食量y。效用函数由下式给出12u(x,yj=x3y:(i=1,2)又假定每个人要花30元,Px=lO 元,Py=l0 元,并且假定两人是一起看电视的(禁止单独收看电视)。问:这两个人该如何配置自己的收入,才符合萨缪尔森规则?19.甲有300单位商品 x,乙有200单位y,两人的
17、效用函数都是 u(x,y)=xy。请推导出所有满足帕累托有效的配置。两人通过交换达到帕累托有效配置,求出两人进行交换的价格体系,并求出交换结果。(1)设甲乙两人的消费束为:甲(xyj,乙(x2,y2),题设的约束条件为:XX1+X2=300V1V2=200帕累托有效配 k 的条件是:甲、乙两人的无差异曲线相切,即先求甲的效用最大化条件:maxUi*,y1)=%s.t.x1Py1=300150 斛行:x1=150,y1=;P再求乙的效用最大化条件:MRSxn=MRSx%即x1,y1x2,y2MUMUx2MUy1MUy2于是我们有:联立得:因此,所有满足y1=y2x1x2工二300二”x1200-
18、x132Pareto取优的状态的契约线为:y1=-x1。3(2)令x价格为1,y的价格为p,maxU2(x2,y2)=x2y2s.t.x2py2=200p解得:x2=100p,y2=10。;2 由弟(1)问中解得的Pareto取优条件:y1=x13可求得:p=1.5o止匕时 x1=150,y=100,x2=150,y2=100也就是说,社会最终的价格体系为:X的价格为1,Y的价格为1.5;交换结果为:甲消费150单位的X,消费100单位的Y;乙也消费150单位的X,消费100单位的丫。20.某个消费者的效用函数为 u(x1,x2)=x12x2,商品1和2的价格分别为 R 和 P2,此消费者的收入为m.求该消费者的马歇尔需求函数、 间接效用函数和支出函数。 解: 解线性规划:5151 玛天+鼻毛=y其拉格朗日函数为:使L(?)最大化要求入,x1,x2满足一阶条件江高工 3 3 一%出=0=01式除以2式,得:当.=旦 nyny_ _JL-J,=-工 1 1Pi.2 2 尸代4入3式,得1x的需求函数:2r2r代5入4式,得2x的需求函数:y3H3H6 6代5、6两式入效用函数中,得到当效用最大化时有间接效用函数:r-圉言又消费者效用最大化意味着y=e(p,v(p,y)即可得到支出函数:0加上NPMP=(1O*P;PWE=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年航空货物运输合同范本
- 2025木材购销类合同模板
- 2025租赁合同与买卖合同的关联性分析
- 2025瓷砖买卖合同样本
- 华润电力测试题
- 网络犯罪侦查与数字取证考核试卷
- 2025租赁合同印花税新政策
- 2025携手创业协议范本合作合同
- 2025年度商业综合体广告牌制作与安装合同
- 2025试析网络购物中的消费者合同关系研究
- 安宁疗护服务流程的质量评估指标
- 《玉米栽培技术与病虫害防治》课件
- 卫生院、社区卫生服务中心关于开具死亡医学证明流程中死者死亡信息核实补充制度
- 2025年主管护师中级考试题库及答案参考
- 【语文】《短文两篇:陋室铭》课件 2024-2025学年统编版语文七年级下册
- 舞蹈疗法在儿童精神疾病康复中的应用-洞察分析
- 2025年春新人教版语文一年级下册教学课件 18 棉花姑娘
- 工贸企业负责人安全培训
- 《陪诊从业人员能力培训标准》
- 《氢气输送管道工程设计规范》
- 管网工程施工重难点分析及对应措施
评论
0/150
提交评论