下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高考中三次函数图象的切线问题三次函数的切线蕴含着许多美妙的性质,用导数方法探求切线的性质,为分析问题和解决问题提供了新的视角、新的方法,不仅方便实用,而且三次函数的切线性质变得十分明朗.纵览近几年高考数学试题,三次函数的切线问题频频出现,本文给出三次函数切线的三个基本问题.一、已知斜率为与三次函数图象相切的切线三次函数1、,斜率时,有且只有一条切线;时,有两条不同的切线;时,没有切线;2、,斜率时,有且只有一条切线;时,有两条不同的切线;时,没有切线;证明 1、 当时, 当 时,方程有两个相同解,所以斜率为的切线有且只有一条;其方程为: 当时,方程,有两个不同的解,且=-,即存在两个不同的切点
2、,且两个切点关于三次函数图象对称中心对称。所以斜率为的切线有两条。当时,方程无实根,所以斜率为的切线不存在。2、时,读者自己证明。二、过三次函数图象上一点的切线设点P为三次函数图象上任一点,则过点P一定有直线与的图象相切。若点P为三次函数图象的对称中心,则过点P有且只有一条切线;若点P不是三次函数图象的对称中心,则过点P有两条不同的切线。证明 设 过点P的切线可以分为两类。1 P为切点 切线方程为:2 P不是切点,过P点作图象的切线,切于另一点Q() 又 (1) 即 代入(1)式得 讨论:当时, ,也就是说,当时,两切线重合,所以过点P有且只有一条切线。 当时,所以过点P有两条不同的切线。其切
3、线方程为: 由上可得下面结论:过三次函数上异于对称中心的任一点作图象的切线,切于另一点,过作图象的切线切于,如此继续,得到点列-,则,且当时,点趋近三次函数图象的对称中心。证明 设过与图象切于点的切线为, 又 = 即 设 则 数列是公比为的等比数列, 即 。 三、过三次函数图象外一点的切线 设点为三次函数图象外一点, 则过点一定有直线与图象相切。(1) 若则过点恰有一条切线;(2) 若且,则过点恰有一条切线;(3) 若且=0,则过点有两条不同的切线;(4)若且,则过点有三条不同的切线。其中证明 设过点作直线与图象相切于点则切线方程为 把点代入得:,设 令则因为恰有一个实根的充要条件是曲线与轴只相交一次,即在上为单调函数或两极值同号,所以或且时,过点恰有一条切线。有两个不同实根的充要条件是曲线与轴有两个公共点且其中之一为切点,所以且=0时,过点有两条不同的切线。有三个不同实根的充要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 领带饰针项目运营指导方案
- 2024年劳动新篇章:标准化雇佣合同模板
- 建设工程施工合同(2篇)
- 2024年原料供应合同:长期耗材订购协议
- 2024年初创企业股权投资合同范本
- 建筑物内部表面的消毒行业营销策略方案
- 2024年个人房屋装修保修简单合同范本
- 生物显微镜产品供应链分析
- 花园水管用喷雾器细分市场深度研究报告
- 犬用救生衣项目运营指导方案
- 小学二年级上册道德与法治-9这些是大家的-部编ppt课件
- 《矿山机械设备》复习题
- 冷库工程特点施工难点分析及对策
- 中国古代楼阁PPT课件
- 排舞教案_图文
- 简单趋向补语:V上下进出回过起PPT课件
- 超声检测工艺卡
- 公司“师带徒”实施方案
- AP1000反应堆结构设计
- 《内科护理学》病例分析(完整版)
- 5GQoS管理机制介绍
评论
0/150
提交评论