6水文地质学-地下水运动规律ppt课件_第1页
6水文地质学-地下水运动规律ppt课件_第2页
6水文地质学-地下水运动规律ppt课件_第3页
6水文地质学-地下水运动规律ppt课件_第4页
6水文地质学-地下水运动规律ppt课件_第5页
已阅读5页,还剩62页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、水文地质学地下水运动规律 地下水的运动特点。 地下水运动的根本规律达西定律。 地下水取水构筑物的根本类型。 地下水流向潜水完好井的计算公式裘布依公式。 地下水流向承压水完好井的计算公式。 裘布依公式的讨论。 裘布依型单井稳定流公式的适用范围。 地下水流向井的非稳定流实际泰斯公式。地下水的运动特点曲折、复杂的渗流通道。缓慢的流速。普通为紊流,很少出现层流。绝大多数为非稳定流运动,极少数为稳定流运动。天然条件下,普通均呈缓变流动,有时为非缓变流动。空袭中实践水流方向和水流通道等效平均直线水流方向和水流通道有3页没用,跳过吧有3页没用,跳过吧有3页没用,跳过吧有3页没用,跳过吧有3页没用,跳过吧有3

2、页没用,跳过吧有3页没用,跳过吧有3页没用,跳过吧有3页没用,跳过吧有3页没用,跳过吧豆丁完全处理方案,1000W高质量文档+1天上传5W文档经过率8成=1年后月被动收入5W以上,全套处理方案售价仅8W元,有意请联络扣扣709604208豆丁完全处理方案,1000W高质量文档+1天上传5W文档经过率8成=1年后月被动收入5W以上,全套处理方案售价仅8W元,有意请联络扣扣709604208v紊流水质点的运动方向不一致、流线随机交叉。v层流水质点的运动平行一致、流线无交叉景象。紊流层流地下水曲折、复杂的渗流通道v稳定流运动渗流场中地下水各运动要素不随时间而变化的运动。v非稳定流运动渗流场中地下水运

3、动要素随时间而变化的运动。v缓变流动流线弯曲度很小而近似直线、相邻流线间夹角很小而近似平行、各过水断面近似平面、同一过水断面上各点水头近似相等的地下水流动。v地下水运动属于三维问题,经过缓变流动假设,将使研讨地下水运动规律的三维问题简化为二维问题。v渗流地下水在曲折、复杂的通道中缓慢流动。v过水断面渗流经过的含水层横断面,垂直于流线方向。过水断面流线过水断面 流线缓变流动地下水浸透受控于水位差地下水渗流随地形变化旱季潜水面雨季潜水面平均潜水面潜水面随地形和季节变化潜水面随地形和季节变化v普通情况下,地下水在地层空隙中运移速度极其缓慢,因此特称为浸透或渗流。v地下水的浸透受控于含水层的产状、水力

4、坡度【水位差】、空隙度、透水性、空隙大小、地温等多种要素。v地层的孔隙度与岩土的颗粒外形、堆积程度、分选性有关。v地层的透水性与空隙的连通程度有关。颗粒外形 颗粒堆积程度 颗粒分选性 在研讨地下水运动规律时,不能够研讨每个实践渗流通道中的水流运动,而是研讨等效平均直线水流通道中的水流运动。 也就是说,采用充溢整个含水层【包括空隙和岩土颗粒所占据的全部空间】的假想水流,替代仅在空隙中运动的实践水流。空袭中实践水流方向和水流通道等效平均直线水流方向和水流通道等效等效实践水流 假想水流等效等效实践水流 假想水流采用充溢整个含水层的假想水流替代仅在空隙中运动的实践水流的前提条件。 假想水流经过任一过水

5、断面的流量必需等于实践水流经过同一过水断面的流量。 假想水流在任一过水断面上的水头必需等于实践水流在同一过水断面上的水头。 假想水流在流动过程中所受的阻力必需等于实践水流在渗流过程中所受的阻力。地下水运动的根本规律达西定律 Darcy法国水利工程师,1802。 达西定律为水文地质学、地下水动力学、岩体水力学的中心。 现代的基坑与隧道降水设计、地下水开采设计、地下水资源管理与评价、水文地质勘察等的绝大多数计算公式,均是基于达西定律推导出来的。达西定律根本假设地层属于多孔介质。地下水在地层中运移表现为浸透或渗流。自然条件下,地下水在地层中运移的阻力较大,因此为层流运动。达西定律计算式。 I-水头梯

6、度【物理意义:渗流单位长度的水头损失】。K-浸透系数【物理意义:当水头梯度I1时,浸透速度】。IAKAKLHHAVQ21QQ参与水A砂层达西浸透实验渗出水v据达西定律计算的浸透速度V与地下水在地层中的实践流速v之间关系。Q=AV=nAv n为地层的空隙率 A为过水断面积V=nv由于nV,即由达西定律计算的浸透速度V远小于地下水在地层中的实践流速v。q 达西定律假设地层全部由空隙组成。q 过水断面积为A。q QAV。q 实践地层由土粒和空隙组成。q 地层的空隙率为n。q 实践的过水断面积为nA。q Q=nAv。等效等效地下水取水构筑物的根本类型垂直取水构筑物潜水完好井潜水非完好井承压水完好井承压

7、水非完好井程度取水构筑物渗水管渗渠垂直取水构筑物程度取水构筑物地下水流向潜水完好井的计算公式裘布依公式裘布依稳定流实际潜水井在潜水完好井中长时间抽水后,井中动水位和出水量均到达稳定形状,并在井周围构成稳定降水漏斗。H潜水层厚度。R降水漏斗半径,即影响半径。s井中水位下降值。h抽水稳定后,井中水位。r井半径。 Px , y降水漏斗面上任一观测点。RHyxrshPPx,y裘布依公式推导假设简化条件抽水前,含水层天然水力坡度为零。含水层为各向同性的均质体。含水层底板为隔水层。影响半径范围内,无渗入、无蒸发,各过水断面上流量不变。影响半径范围外,流量为零。影响半径圆周上为定水头。井内及其附近为二维流,

8、即井内不同深度的水头降均一样。井附近的水力坡度不大于1/4。为了简化问题,抽水时,采用流线倾角的正切替代正弦,tgsin,150。a实践流线。b简化流线。裘布依公式推导基于达西定律Q=ki,推导裘布依公式。由于浸透系数k对于各向同性均质体是一个定常数,因此公式推导关键在于如何确定水头i和过水断面积。过水断面实践为一系列弯曲程度不同的曲面,但是根据井附近的水力坡度不大于1/4的假设,可以以为过水断面为一系列垂直于含水层底板的圆柱面。=2xy。i=sin=dy/dLtg=dy/dx。RHyxrshPPx,yxyyx0dydxdLxydxdykkiQ2kydyxdxQ22RHrhdxQK y dyx

9、222222223.141.36lnlnln2.3lglgK HhK HhK HhHhQKRRRRrrrr21.36lgH s sQKRr边境条件边境条件y y:hHhHx x:rRrRRHyxrshPh=H-s2 2l n l nQ R rK H h 22lnlnQRrK Hh 222222223 .1 41 .3 6l nl nl n 2 .3 l gl gK H hK H h K H hH hQKRRRRrrrr21.36lgH s sQKRr裘布依公式裘布依公式的运用计算含水层的浸透系数k。Q、H、R、s、r由抽水实验测出。预测含水层的抽水量Q。 k、H、R、s、r由设计给出。22lg

10、lg733. 02lglg733. 0hHrRQssHrRQk公式适用条件:缓变流动,Qs或h2之间呈线性关系。h2H2h2。地下水流向承压水完好井的计算公式裘布依稳定流实际承压水井在承压水完好井中长时间抽水后,井中动水位和出水量均到达稳定形状,并在井周围构成稳定降水漏斗。M承压水层厚度。H未抽水前,承压水位。R降水漏斗半径。s井中承压水位下降值。h抽水稳定后,井中承压水位。r井半径。 Px , y降水漏斗面上任一观测点。HRyxrhMsPyx0 xM承压水完好井公式推导假设简化条件抽水之前,含水层天然水力坡度为零。含水层为各向同性的均质体。含水层底板、顶板为隔水层。影响半径范围内,无渗入、蒸

11、发,各过水断面上流量不变。影响半径范围外,流量为零。影响半径圆周上为定水头。井内及其附近为二维流,即井内不同深度的水头降均一样。井附近的水力坡度不大于1/4。HRyxrhMsPyx0 xM承压水完好井公式推导基于达西定律Q=ki,推导承压水完好井公式。由于浸透系数k对于各向同性均质体是一个定常数,因此公式推导关键在于如何确定水头i和过水断面积。过水断面实践为一系列弯曲程度不同的曲面,但是根据井附近的水力坡度不大于1/4的假设,可以以为过水断面为一系列垂直于含水层底板的圆柱面。圆柱面的高度即为承压水层厚度M。=2xM。i=sin=dy/dLtg=dy/dx。HRyxrhMsPyx0 xMHRyx

12、rhMsPyx0 xM2.73lglgM HhQKRr2RHrhdxQKMdyxdxdyxMkikQ2kMdyxdxQ22.73lgMsQKRr边境条件边境条件y y:hHhHx x:rRrRh=H-sl n l n 2Q R rK M H h lnln2QRrKM H h承压水完好井公式的运用计算含水层的浸透系数k。Q、H、R、M、s、r由抽水实验测出。预测含水层的抽水量Q。k、H、R、M、s、r由设计给出。承压水完好井公式2.73lgMsQKRr2.73lglgM HhQKRrhHMrRQMsrRQklglg366. 0lglg366. 0公式适用条件:缓变流动,Qs或h2之间呈线性关系。

13、h2H2h2。Qs0承压井潜水井Qs 关系曲线关系曲线21.36lgH s sQKRr潜水完好井公式承压水完好井公式2.73lgMsQKRr裘布依公式的假设干讨论 裘布依公式以为,含水层的水头损失【井中水位下降值s】仅仅是由抽出的水量Q引起的。现实上,这种水头损失应包括如下几方面。v地下水在含水层中向井流动呵斥的损失。裘布依公式思索的水头损失。v水井施工时,泥浆堵塞井周围的部分渗流通道,使地下水渗流受阻而呵斥的水头损失。v地下水经过过滤器网孔受阻而呵斥的水头损失。v地下水在井中向上运移抑制井壁摩阻力和自重力而呵斥的水头损失。21.36lgH s sQKRr2.73lgMsQKRr以上各种水头损

14、失不能够由右式一致表示。21.36lgH s sQKRr2.73lgMsQKRr裘布依公式的假设干讨论 根据裘布依公式,抽水量Q与井半径r之间呈对数关系,即井半径r对抽水量Q影响很小,抽水量Q随井半径r增大而添加的幅度非常小,如井半径r增大10倍,抽水量Q只添加40左右。然而,大量抽水实验阐明,随井半径r增大,实践添加的抽水量Q远大于由裘布依公式的预测值。因此,抽水量Q与井半径r之间的对数关系已被实际所否认。BAhhaBAa潜水井水跃表示图潜水井水跃表示图裘布依公式的假设干讨论 抽水实验阐明,潜水井抽水,只需当水位降低非常小时,井内水位才与井壁水位一致;而当水位降低较大时,井内水位明显低于井壁

15、水位,这种景象称为水跃,即渗出面,其值为水位差h。 水跃【渗出面】有如下作用。v只需存在水跃,图中阴影部分的水才干渗入井内。v只需存在水跃,才干使井壁总有一定高度的过水断面,而保证流量Q渗入井内。假设不存在水跃,当井内水位降至隔水底板时,井壁处的过水断面便为零,水将无法渗入井内。 远离井,地下水流速的垂直分量小,因此流线接近于直线、过水断面接近于圆柱面。 而井附近的流线那么为曲线、过水断面为非圆柱曲面,所以存在水跃景象。 裘布依公式假设井附近的水力坡度不大于1/4,即i=sin=dy/dLtg=dy/dx,以为井附近的流线仍为直线、过水断面也为圆柱面,所以无法思索水跃景象。裘布依公式的假设干讨

16、论BAhhaBAa潜水井水跃表示图潜水井水跃表示图hw裘布依假设xydxdLdyL裘布依公式的假设干讨论 由潜水完好井公式可以看出,当s=H时,井抽水量Q最大。 这现实上是不能够的、实际上也是不合理的。由于当s=H时,必有h=H-s=0,那么井壁无过水断面,显然无水渗入井内。 根本缘由在于,裘布依公式推导过程中,忽略了垂直渗流分量,而以 i=tg替代i=sin。只需150,误差才很小;而降深较大时,误差将很大。21.36lgH s sQKRrHHs) 1(2)2(取极大值点QRHyxrshP裘布依型单井稳定流公式适用范围 一切包含影响半径且在裘布依公式根底上推导出来的地下水流向井运动的稳定流公

17、式,统称为裘布依型单井稳定流公式。 裘布依型单井稳定流公式适用范围【也即运用条件】如下。v有充足的地下水就地补给水源,并且补给水源的水头稳定。v地下水补给充足、渗流稳定、周转快、调理才干强、储存耗费不明显。v抽水时,可以较快构成新的动态平衡,影响半径和下降漏斗稳定。裘布依型单井稳定流公式适用范围v假设在无充足就地补给且无定水头的宽广含水层中抽水,如开采大面积承压水,由于补给途径远、周转慢、调理时间长、耗费附近储存快等,因此抽水时新的动态平衡构成很慢且影响半径、下降漏斗不稳定,属于非稳定流条件下抽水,不适用于裘布依型单井稳定流公式。但是,在这种情况下,假设进展长时间抽水且在抽水井附近设置观测井,

18、承压抽水井的观测井中假设s与lgr之间呈直线关系,潜水抽水井的观测井中假设h2与lgr之间呈直线关系,那么可以根据观测井的数据计算含水层的浸透系数。21.36lgH s sQKRr2236. 1lg36. 1lgkHRQkhrQ2.73lgMsQKRrRQkMsrQlg73. 2lg裘布依型单井稳定流公式适用范围v在抽水量小于补给量地域,可以先由抽水井附近观测井的数据计算含水层的浸透系数,再采用裘布依型单井稳定流公式预测不同抽水量条件下抽水井内及其附近的地下水位下降值。v裘布依型单井稳定流公式的运用,除了要求符合上述条件之外,还应满足如下条件。q1.6Mr0.178R。qr观测井与抽水井之间间

19、隔。qM含水层厚度。qR抽水井影响半径。q限定1.6Mr,目的在于使观测井置于二维流中。q限定r0.178R,目的在于保证观测井内有一定水位下降值。裘布依型单井稳定流公式适用范围v满足裘布依型单井稳定流公式的最理想条件是较大圆形海岛中心的一口井。地下水很丰富、补给很充足、补给途径很短、周转很快、调理才干很强、储存耗费极不明显、影响半径极稳定且几乎各向等长度、下降漏斗极稳定且不同深度程度截线几乎为圆形、到达新的动态平衡时间很短。HhR 圆形海岛地下水流向井非稳定流实际地下水流向井非稳定流实际在抽水过程中,地下水的运动要素不断变化而无法到达动态平衡,即动水位不断下降、影响半径与降落漏斗不断扩展,直

20、至含水层边缘或补给水体。以泰斯实际为代表。大量抽取地下水时,地下水运动不能够到达稳定形状,因此以稳定流实际为根底的裘布依公式将不适用新的要求。初始水面Q地下水流向井非稳定流实际工程运用评价地下水开采量。预告地下水位下降。确定含水层水文地质参数。地下水流向井非稳定流实际根本概念弹性储存从承压含水层中抽取地下水,主要是由于水头降低,引起含水层弹性紧缩、承压水弹性膨胀,从而释放部分地下水。当水头上升时,承压含水层又将储存所释放的地下水。这种景象称为弹性储存。地下水流向井非稳定流实际根本概念越流假设抽水含水层的顶板、底板为弱透水层,当从抽水含水层抽水时,由于水头降低而使抽水含水层与相邻含水层之间构成水

21、头差,相邻含水层便经过弱透水层与抽水含水层之间建立水力联络。这种水力联络称为越流。补给层弱透水层主透水层隔水层潜水面承压水面地下水流向井非稳定流实际根本概念抽水含水层、弱透水层、相邻含水层合称为越流系统。抽水含水层称为主含水层或越补含水层。相邻含水层称为补给层。第一类越流系统主含水层抽水时,不思索弱透水层的弹性储量,补给层的水头不变。第二类越流系统主含水层抽水时,思索弱透水层的弹性储量,补给层的水头不变。第三类越流系统主含水层抽水时,思索弱透水层的弹性储量,补给层的水头不断变化。补给层弱透水层主含水层隔水层潜水面承压水面地下水流向潜水完好井非稳定流运动微分方程无越流含水层潜水完好井,抽水过程中

22、,随时间t延伸,水位h不断下降、降落漏斗不断扩展。如何计算抽水量Q?为理处理这一问题,拟引入微积分思想。abhdhdhdhdrrt 时辰降落漏斗时辰降落漏斗tdt时辰降落漏斗时辰降落漏斗a bdtH潜水面QQ+dQc在时段dt内,近似以为c点与b点潜水位一样。 将整个抽水的非稳定流过程划分为无数个微小的时段dt。在每个时段dt内,非稳定流完全可以近似为稳定流,因此可以运用达西定律计算抽水量。 t时辰降落漏斗上a点变为t+dt时辰降落漏斗上b点。 dh时段dt内,a点的竖向下降间隔。 dr时段dt内,a点的程度挪动间隔。 ht+dt时辰,c点水位。 dh时段dt内,井内水位下降值。abhdhdh

23、dhdrrt 时辰降落漏斗时辰降落漏斗tdt时辰降落漏斗时辰降落漏斗a bdtH潜水面QQ+dQc在时段dt内,近似以为c点与b点潜水位一样。 t+dt时辰,降落漏斗上b点至井轴线的程度间隔为r。 以下思索流过厚度为dr、高度为h的厚壁圆筒微分段的内、外过水断面的流量变化dQ。 厚壁圆筒微分段的底面圆环面积为2rdr,内、外圆柱形过水断面积为2rh、2(r+dr)h 。abhdhdhdhdrrt 时辰降落漏斗时辰降落漏斗tdt时辰降落漏斗时辰降落漏斗a bdtH潜水面QQ+dQc在时段dt内,近似以为c点与b点潜水位一样。hdrrdh 据达西定律,经过厚壁圆筒微分段的内圆柱形过水断面的流量Q如

24、下。2212222khrrrhkhrdrdhkhrdrdhrhkikQ潜水的势函数),(trhh 时段dt内,经过厚壁圆筒微分段的内、外圆柱形过水断面的流量变化dQ如下。drrrrdrrrrdrrQdQ2222),(trQQ hdrrdh 时段dt内,厚壁圆筒微分段内的水体变化dV如下。hdrrdhthrdrrdrdhdV22),(trhh %100总水VV含水层的给水度。水V含水层给出水的体积。总V含水层的总体积。 根据含水层中水的延续性原理,时段dt内,经过厚壁圆筒微分段的内、外圆柱形过水断面的流量变化dQ,应等于厚壁圆筒微分段内的水体变化dV。221hkkhT 导水系数,表示含水层导水性

25、能。 kha水位传导系数,表示含水层水位传导速度。 drrrrdrrrrdrrQdQ2222drrrrdrrrrdrrQdQ2222thrdrrdrdhdV22thrdrrdrdhdV22thrdrrdrdhdV22thrrr1122tthkhrrrkh122或tarrrtTrrr1112222tarrrtTrrr1112222微分方程WUQW=U+QQ=W-U地下水流向承压水完好井非稳定流运动微分方程无越流含水层承压含水层弹性水量作用于承压含水层顶板【上隔水层】上的外力W由空隙水压力U和土骨架有效应力Q共同承当。W=U+Q,Q=W-U。抽取地下水,因降低承压水头,致使空隙水压力U减小,从而添

26、加土骨架有效应力Q,土体被紧缩、空隙度减小,释放出一定量水。 此外,由于承压水头降低,含水层中水发生膨胀,也释放出一定量水。 以上释放出的两种水量统称为承压含水层弹性水量。基于上述概念,计算承压含水层的弹性水量在含水层中,取一微元体dV,其压力变化为dP。抽取地下水时,承压水头降低,微元体dV被紧缩,因土体被紧缩、空隙度减小而释放的水量dVs如下。抽取地下水时,承压水头降低,微元体dV被紧缩,因含水层中水发生膨胀而释放的水量dV如下。dVdPdVssdVdPdVss土骨架的弹性系数,表示发生单位体积的弹性紧缩所需的压力, 。1aP水的弹性系数,表示发生单位体积的弹性紧缩所需的压力, 。含水层的

27、空隙度。1aPdVdPndPndVdV)(n 抽取地下水时,承压水头降低,微元体dV被紧缩,全部弹性水量dVe如下。dVdPdVdPndVdPndVdPdVdVdVSsse)(ns承压含水层体积弹性系数rdrMHdHabttdtQQ+dQ承压水层c从承压水完好井中以恒定流量Q抽水,随抽水时间延伸,影响半径不断扩展、降落漏斗不断下降与扩展、井中水位不断下降。采用与潜水完好井同样的方法,建立承压水完好井非稳定流运动微分方程。承压水完好井非稳定流运动微分方程 t时辰降落漏斗上a点变为t+dt时辰降落漏斗上b点。 dH时段dt内,a点的竖向下降间隔。 dr时段dt内,a点的程度挪动间隔。 t+dt时辰

28、,降落漏斗上b点至井轴线的程度间隔为r。 以下思索流过厚度为dr、高度为M的厚壁圆筒微分段的内、外过水断面的流量变化dQ。rdrMHdHabttdtQQ+dQ承压水层cMdrr 承压水完好井的过水断面的高度就是含水层厚度M。 厚壁圆筒微分段底面圆环面积为2rdr,内、外圆柱形过水断面积为2rM、2(r+dr)M,体积为2rdrM。 据达西定律,经过厚壁圆筒微分段的内圆柱形过水断面的流量Q如下。rdrMHdHabttdtQQ+dQ承压水层cMdrr),( trHHrrrHrkMdrdHrMkikQ222kMH承压水的势函数 时段dt内,经过厚壁圆筒微分段的内、外圆柱形过水断面的流量变化dQ如下。

29、drrrrdrrrrdrrQdQ2222),(trQQ 时段dt内,厚壁圆筒微分段内的水体变化dVe,可以看作是厚壁圆筒微分段内弹性水量的变化。dHrdrMdVdPdVe2dPdV水的重度Mdrr 根据含水层中水的延续性原理,时段dt内,经过厚壁圆筒微分段的内、外圆柱形过水断面的流量变化dQ,应等于厚壁圆筒微分段内的水体变化dVe。drrrrdrrrrdrrQdQ2222dHrdrMdVdPdVe2drrrrdrrrrdrrQdQ2222dHrdrMdVdPdVe2dHrdrMdVdPdVe2dHrdrMdVdPdVe2drrrrdrrrrdrrQdQ2222tHrdrM2),( trHHtH

30、rrrM1122ttkMHtHkMrrrMkM122trrrT122*MdrrtrrrT122*TaMkMT 导水系数,表示含水层导水性能。储水系数【弹性给水度】,表示承压水头下降1m时,单位面积含水层【高度为含水层厚度】中释放的弹性水量。水压传导系数,表示含水层水压传导速度。tTrrr122tarrr1122或微分方程承压水完好井非稳定流运动微分方程或tarrrtTrrr1112222tarrrtTrrr1112222微分方程潜水完好井非稳定流运动微分方程承压水与潜水完好井非稳定流运动微分方程的方式完全一样,只是二者的势函数 不同而已。地下水流向承压水完好井非稳定流运动根本方程泰斯公式建立泰斯公式的简化假定条件含水层为各向同性的均质体且等厚度、侧向无限延伸、产状程度。抽水之前,含水层水力坡度为零【初始条件】。对含水层定流量抽水。抽水过程中,含水层中水的渗流服从达西定律。抽水时,因水头下降而引起含水层释放弹性水量是瞬时完成的【线弹性行为】。rr承压水位HM承压水层shQz0承压水完好井泰斯公式的推导确立计算模型,建立坐标系。初始条件:当t=0时, 。边境条件:当t=0时,kMHrk0 ,20Qrrrlingrk时,当无限远边境无限近边境rrQrrQ22 思索以上初始条件和边境条件,对承压水完好井非稳定流运动微分方程进展一定积分变换,可以解出承压水完好井泰斯公式【根本方程】如下。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论