版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、九年级数学上册第四章相似三角形检测卷(浙教版共 14 套)第 4 章相似三角形检测卷一、选择题.若 2x-7y = 0,贝Ux : y 等于A. 2 : 7B. 4 : 7c. 7 : 2D. 7 : 4.如图所示的两个四边形相似,则/a的度数是A.87B.60c.75 D.120第 2 题图.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点 B, c, D,使得 AB 丄 Be, cD 丄 Bc,点 E 在 Bc 上,并且点 A, E, D 在同一条直线上.若测得 BE= 20, cE =10 , cD= 20,则河的宽度 AB 等于第 3 题图A. 60B. 40c. 30D.
2、 20.如图,已知 ABc DEF AB:DE= 1 : 2,贝下列等 式一定成立的是第 4 题图A.BcDF= 12B. / A 的度数/ D 的度数=12c. ABc 的面积 DEF 的面积=12D. ABc 的周长 DEF的周长=12.如图,在平行四边形 ABcD 中,AB= 6, AD= 9,ZBAD 的平分线交 Bc 于 E,交 Dc 的延长线于 F, BGL AE 于 G, BG =42,则EFc 的周长为A. 11B. 10c. 9D. 8第 5 题图如图, ABc 中,AD 是中线,Bc= 8,/ B=ZDAc,贝 U线段 Ac 的长为第 6 题图A. 4B. 42c. 6D.
3、 43若两个扇形满足弧长的比等于它们半径的比,则称这两个扇形相似.如图,如果扇形AoB 与扇形 A1o1B1 是相似扇形,且半径 oA: o1A1=.那么下面四个结论:第 7 题图/ AoB=ZAlolBI;厶 AoBAAlolBI;ABA1B 仁;扇形 AoB 与扇形 A1o1B1 的面积之比为 2.成立的个数为A. 1 个 B. 2 个 c. 3 个 D. 4 个宽与长的比是 512 的矩形叫做黄金矩形.我们可以用这样的方法画出黄金矩形:作正方形ABcD 分别取 AD Bc的中点 E、F,连结 EF:以点 F 为圆心,以 FD 为半径画弧, 交 Bc的延长线于点 G;作 GHLAD 交 A
4、D 的延长线于点 H, 则图中下列矩形是黄金矩形的是第12题图第 8 题图A.矩形 ABFEB 矩形 EFcDc.矩形 EFGHD 矩形 DcGH .如图,在 ABc 中,以 Bc 为直径的圆分别交边 Ac、AB 于 D、E 两点,连结 BD DE.若 BD 平分/ ABc,则下列结 论不一定成立的是第 9 题图A. BD 丄 AcB. Ac2= 2AB?AEc. ADE 是等腰三角形D. Bc= 2AD0.如图,梯子共有 7 级互相平行的踏板,每相邻两级踏板之间的距离都相等.已知梯子最上面一级踏板的长度A1B1= 0.5,最下面一级踏板的长度A7B7= 0.8.则第五级踏板 A5B5 的长度
5、为第 10 题图A. 0.6B . 0.65c . 0.7D. 0.75二、填空题1. ABc 与厶 DEF 相似且对应中线的比为 2 : 3,则厶 ABc 与厶 DEF 的面积的比为_.如图,小明在打网球时,使球恰好能打过网,而且落 在离网4 米的位置上,则球拍击球的高度h 为_.3.如图所示,已知 AB/ EF/ cD, Ac、BD 相交于点 E,第17题图AB= 6c, cD= 12c,贝 EF=_ .第 13 题图.AB= AE, Bc= EF, / B=ZE, AB 交 EF 于 D.给出下列 结论:第 14 题图/AFc=Zc:DF=cF;3AADEAFDB/BFD=/cAF.其中
6、正确的结论是_.如图,已知 ABc 和厶 DEc 的面积相等,点 E 在 Bc 边 上,DE/ AB 交 Ac 于点 F, AB= 12, EF= 9,贝 U DF 的长是 _.第 15 题图.如图,在钝角三角形 ABc 中,A 吐 6c, Ac= 12c,动 点 D 从A 点出发到 B 点停止,动点 E 从 c 点出发到 A 点停止.点 D 运动的速度为 1c/s,点 E 运动的速度为 2c/s.如果两点同 时运动,那么当以点 A D E 为顶点的三角形与 ABc 相似 时,运动的时间 t 为s.第 16 题图三、解答题.如图,在 ABc 中,已知 DE/ Bc, AD= 4, DB= 8,
7、 DE =3.求ADAB勺值;求 Bc 的长.18.如图, ABc 是等边三角形,D、E 在Bc 边所在的直线上,且 Bc2= BD?cE.第 18 题图求/ DAE 的度数;求证:AD2= DBPDE.19.已知矩形 ABcD 的一条边 AD= 8, 将矩形 ABcD 折叠,使得顶点 B 落在 cD 边上的 P 点处.如图, 已知折痕与边 Bc 交于 0,连结 AP、oP、oA.求证: ocPsPDA若厶 ocP 与厶 PDA 的面积比为 1 : 4,求边 AB 的长.第 19 题图 20 .如图,在厶 ABc 中,点 D, E 分别在边 AB, Ac上,/ AED=ZB,射线 AG 分别交
8、线段 DE Bc 于点 F, G, 且 ADAc=DFcG.第 20 题图求证: ADFAAcG;若 ADAc= 12,求 AFFG 的值.21 .如图 1,已知/ AcB=/DcE=90,Ac=Bc=6,cD=cE,AE=3,ZcAE=45,求 AD 的长;如图,已知/ AcB=ZDcE= 90, / ABc=ZcED=ZcAE=30 , Ac= 3, AE= 8, 求 AD 的长.第 21 题图 22.如图 ABc 的三个顶点都在Oo 上, / BAc 的平分线与 Bc 边和Oo 分别交于点 D、E.1.5 米第 22 题图指出图中相似的三角形,并说明理由;若 Ec= 4, DE= 2,求
9、 AD 的长.23 .如图,在平行四边 形 ABcD中,过点 A 作 AE 丄 Be,垂足为 E,连结 DE F 为线 段 DE 上一点,且/ AFE=ZB.第 23 题图求证: ADFADEc;若 AB= 4, A 33, AE= 3,求 AF 的长.函数 y= 34x- 12 的图象分别交 x 轴,y 轴于 A, c 两点.第 24 题图在 x 轴上找出点 B,使 AcBAAoc,若抛物线经过 A、 B、c 三点,求出抛物线的解析式;在的条件下,设动点 P、Q 分别从 A B 两点同时出发, 以相同的速度沿 Ac、BA 向 c、A 运动,连结 PQ 设 AP=, 是否存在值,使以 A、P、
10、Q 为顶点的三角形与 ABc 相似, 若存在,求出所有的值;若不存在,请说明理由.第4 章相似三角形检测卷.C2.A3.B4.D5.D6.B7.D8.D9.D10.C1.4 : 93.4c73 或 4.813; Bc= 9. ABc 是等边三角形,/ ABc=ZAcB= 60 , AB= Ac=Be, /ABD=ZAcE,TBc2=BD?cE,AAB?AC=BD?cE,即ABBD= cEAc,.ABDAEcA;./ DABZE,./ DAE=ZDABZBAc+ZEAc=120;证 明:TZDAE=ZABD= 120,ZD=ZABDAEAD.ADD 吕 DBAD.AD2=DB?DE.四边形 AB
11、cD 是矩形,AAD= Bc, Dc= AB,ZDABZB=Zc=ZD= 90 .由折叠可得: AP= AB, Po= Bo,ZPAo=ZBAo,ZAPo=ZB.ZAPo=90.ZAPD= 90ZcPo=ZPoe.TZD=Zc,ZAPD=ZPoc,.AocPAPDA.ocP 与 PDA 的面积比为1 :4,AocPD= oPPA= cPDA= 14= 12.APD= 2oc, PA= 2oP, DA=2cP.TAD=8,ACP=4, Bc= 8.设 oP= x,贝 oB= x, co = 8 x,在 Rt Pco 中,TZc = 90, cP= 4, oP= x, co = 8 x,Ax2=
12、2+ 42.解得: x = 5.TAB= AP= 2oP= 10,.边 AB 的长为 10.0.证明:TZAED=ZB,ZDAE=ZBAC,AZADF=Zc,TADAc=DFcGADFAAcQ /ADFAAcQTADAc =AFAQ 又TADA=12 ,AAFAQ= 12 ,AAFFQ= 1.1. 如图 1,连结 BE,:/ AcB=ZDcE= 90,./ AcB + / AcE=ZDcE+ZAcE,即/ BcE=ZAcD,又:Ac= Bc, Dc= Ec,在厶AcD 和厶BcE 中,Ac= Bc,/ AcD=ZBcE, Dc =Ec,.AAcDABcE, AD=BE,: Ac= Bc= 6,
13、 AB= 62,:/ BAc=/ cAE= 45,/ BAE=90,在 Rt BAE 中,AB= 62 , AE= 3, BE= 9, AD= 9;第 21 题图如图 2,连结 BE,在 Rt AcB 和 Rt cDE 中,/ ABc= / cED=30,易知 AcBc= cDcE= 33,:/ AcB=/ DcE= 90,/BcE=/AcD,AAcABcE, ADBE= AcBc=33,:/ BAc= 60,/ cAE=30,/ BAE= 90,又 AB =6, AE= 8, BE= 10, AD= 1033.2. : AE 平分/ BAc,/ BAE=/ cAE.又/ B 与/ AEc 都 对应Ac, / B=/ AEc.又/ AD 吐/ cDE. ABDAAEccED;:AEcAcEDAEcE=cEDEAE4=42,解 得AE= 8. AD= AE- DE= 8-2= 6.3. 证明:四边形 ABcD 是平行四边形,AD/ Bc , ABII cD,/ ADF=/ cED / B+/ c = 180 , :/ AFE+/ AFD=180 ,/AFE=/B, /AFD=/c, ADFADEc;:四边形 ABcD 是平行四边形, AD/ Bc , cD= A 吐 4,又:AE 丄 Bc , AE 丄 AD 在Rt ADE 中 , DE= AD2+ AE2= 2 + 32 =
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023中国产业转移发展系列对接活动(河南) 工信部直属高校产学研合作河南专题活动 (直属高校科技成果) 资 料 汇 编
- 二零二四年商业地产项目投资合作合同模板3篇
- 二零二四年度XX企业员工劳动权益保障与管理协议9篇
- 2025年度高端物业小区保洁与绿化维护服务合同3篇
- 二零二五年度智能家居布艺定制服务协议2篇
- 2025年度智能车联网技术厂长聘用协议书范例4篇
- 齿轮工艺课程设计课程
- 专业技术人员借调协议2024年标准格式版
- 自动化控制 课程设计
- 2025年代理商客户满意协议
- (主城一诊)重庆市2025年高2025届高三学业质量调研抽测 (第一次)地理试卷(含答案)
- (2024)湖北省公务员考试《行测》真题及答案解析
- 口算天天练一年级下
- GB/T 12706.1-2020额定电压1 kV(Um=1.2 kV)到35 kV(Um=40.5 kV)挤包绝缘电力电缆及附件第1部分:额定电压1 kV(Um=1.2 kV)和3 kV(Um=3.6 kV)电缆
- 简单临时工劳动合同模板(3篇)
- 聚酯合成反应动力学
- 自动控制原理全套课件
- 上海科技大学,面试
- 《五年级奥数总复习》精编课件
- TS2011-16 带式输送机封闭栈桥图集
- 矿区道路工程施工组织设计方案
评论
0/150
提交评论