概率统计章节作业_第1页
概率统计章节作业_第2页
概率统计章节作业_第3页
概率统计章节作业_第4页
概率统计章节作业_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一章随机事件与概率一、单项选择题1.掷一枚骰子,设A=出现奇数点,B=出现1或3点,则下列选项正确的是( ).A.AB=出现奇数点 B. AB=出现5点 C. B=出现5点 D. A B=2.设A、B为任意两个随机事件,则下列选项中错误的是 ( ).A. (A+B)-B=A B. (A+B)-B=A-B=A-ABC. (A-B)+B=A+B D.AB+AB=A3.将一枚匀称的硬币投掷两次,令Ai=第i次正面向上(i=1,2),则“至少有一次正面向上”可表示为 ( ).A.A1A2 A1A2 B.A1A2 C.A1A2 D.A1 A24.某人向一目标射击3次,设Ai表示“第i次射击命中目标”(

2、i=1,2,3),则3次都没有命中目标表示为 ( ).A.A1A2A3 B.A1+A2+A3 C.A1A2A3 D.A1A2A35.设A与B为互为对立事件,且P(A)>0,P(B)>0,则下列各式中错误的是( ).A.P(A|B)=0 B. P(B|A)=0 C. P(AB)=0 D. P(A B)=16.设事件A与B相互独立,P(A)=0.2, P(B)=0.4, 则P(A|B)= ( ).A. 0.2 B. 0.4 C. 0.6 D. 0.87.已知事件A与B互不相容, P(A)>0, P(B)>0, 则 ( ).A.P(A B)=1 B.P(AB)=P(A)P(B

3、)C. P(AB)=0 D.P(AB)>08.设P(A)=0, B为任一事件, 则 ( ).A.A= B.AB C.A与B相互独立 D. A与B互不相容9.已知P(A)=0.4, P(B)=0.5, 且AB,则P(A|B)= ( ).A. 0 B. 0.4 C. 0.8 D. 110.设A与B为两事件, 则AB= ( ).A.AB B. A B C. A B D. A B11.设事件AB, P(A)=0.2, P(B)=0.3,则P(A B)= ( ).A. 0.3 B. 0.2 C. 0.5 D. 0.4412.设事件A与B互不相容, P(A)=0.4, P(B)=0.2, 则P(A|

4、B)= ( ).A. 0.08 B. 0.4 C. 0.2 D. 013.设A, B为随机事件, P(B)>0, P(A|B)=1, 则必有 ( ).A.P(A B)=P(A) B.ABC. P(A)=P(B) D. P(AB)=P(A)14.从1,2,3,4,5中任意取3个数字,则这3个数字中不含5的概率为 ( ).A. 0.4 B. 0.2 C. 0.25 D. 0.7515.某学习小组有10名同学,其中6名男生、4名女生,从中任选4人参加社会活动,则4人中恰好2男2女的概率为 ( ).A.13 B.0.4 C. 0.25 D. 6716.某种动物活20年的概率为0.8,活25年的概

5、率为0.6,现有一只该种动物已经活了20年,它能活到25年的概率是 ( ).A. 0.48 B. 0.75 C. 0.6 D. 0.817.将两封信随机地投到4个邮筒内,则前两个邮筒内各有一封信的概率为( ).A. 0.125 B. 0.25 C. 0.5 D. 0.418.一批产品的合格品率为96%,而合格品中有75%是优质品,从该批产品中任取一件恰好是优质品的概率为 ( ).A. 0.72 B. 0.75 C. 0.96 D. 0.7819.设有10个产品,其中7个正品,3个次品,现从中任取4个产品,则这4个都是正品的概率为 ( ).74C74477 A. B. 4 C. 4 D. 101

6、010C1020.设有10个产品,其中8个正品,2个次品,现从中抽取3次,每次任取1个,取后放回,则取到的3个产品都是正品的概率为 ( ).C8383C838 A. B. 3 C. 3 D. 3 101010C1021.某人打靶的命中率为0.4,现独立地射击5次,则5次中恰有2次命中的概率为 ( ).22 A. 0.42 B. 0.63 C. C50.420.63 D. C50.430.6222.随机地抛掷质地匀称的6枚骰子,则至少有一枚骰子出现6点的概率为( ).5115511551515() B.1-C6() D.1-()6 () C.C6 A.C6666666623.把3个不同的球分别放

7、在3个不同的盒子中,则出现2个空盒的概率为( ).A. 1112 B. C. D. 932324.从1,2,3,4,5,6六个数字中,等可能地、有放回地连续抽取4个数字,则取到的4个数字完全不同的概率为 ( ).54!4!A44 A. B. C. 4 D. 4 186!6A625.某人每次射击命中目标的概率为p(0<p<1),他向目标连续射击,则第一次未中第二次命中的概率为 ( ).A. p2 B. (1-p)2 C. 1-2p D. p(1-p)二、填空题1.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为.2.甲乙两人,每人扔两枚均匀硬币,则两人所

8、扔硬币均未出现正面的概率为 .3.设袋中有5个红球、3个白球和2个黑球,从袋中任取3个球,则恰好取到1个红球、1个白球和1个黑球的概率为.4.从数字1,2,10中有放回地任取4个数字,则数字10恰好出现两次的概率为.5.甲乙丙三人各自独立地向一目标射击一次,三人的命中率分别是0.5,0.6,0.7,则目标被击中的概率为.6.甲袋中装有两白一黑共3个球,乙袋中装有一白两黑共3个球,从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,则取到白球的概率为.7.设事件A与B互不相容,P(A)=0.2, P(B)=0.3, 则P(A B)=.8.设事件A与B相互独立,且P(A+B)=0.6, P(A)=0.

9、2, 则P(B)=.9.设P(A)=0.3,P(B|A)=0.6,则P(AB)=.1110.设P(A)=P(B)=P(C)=,P(AB)=P(AC)=,P(BC)=0,则P(A+B+C)= 46.11.已知P(A)=0.7, P(A-B)=0.3, 则P(AB)=.12.某射手对一目标独立射击4次,每次射击的命中率为0.5,则4次射击中恰好命中3次的概率为.13.已知P(A)=0.4, P(B)=0.8, P(B|A)=0.25, 则P(A|B)=.111 14.设P(A)=,P(B|A)=,P(A|B)=,则P(A B)=. 43215.一批产品的废品率为4%,而正品中的一等品率为60%,从

10、这批产品中任取一件是一等品的概率为.16.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为.三、计算题1.设P(A)=0.4, P(B)=0.2, P(B|A)=0.3, 求P(AB)以及P(A|B).2.已知AB,P(A)=0.2,P(B)=0.3,求:(1)P(A),P(B);(2)P(AB);(3)P(AB);(4) P(A B);(5)P(B-A).3.若事件A与B互不相容,P(A)=0.6, P(A+B)=0.9, 求:(1)P(AB);(2)P(A|B);(3)P(AB).4.已知事件A与B相互独立,且P(A)=0

11、.4, P(A+B)=0.6, 求(1)P(B);(2) P(AB);(3)P(A|B).四、应用题1.一批产品共有50个,其中40个一等品、6个二等品、4个三等品,现从中任取3个产品,求3个产品中至少有2个产品等级相同的概率.2.10把钥匙中有3把能打开门,现从中任取2把,求能打开门的概率.3.将5双不同的鞋子混放在一起,从中任取4只,求这4只鞋子至少能配成一双的概率.4.从0,1,2,3这4个数中任取3个进行排列,求取得的三个数字排成的数是三位数且是偶数的概率.5.一批零件共100个,次品率为10%,每次从中任取一个零件,取出的零件不再放回去,求下列事件的概率:(1)第三次才取得合格品;(

12、2)如果取得一个合格品后就不再取零件,在三次内取得合格品.6.盒子中有8个红球和4个白球,每次从盒子中任取一球,不放回地抽取两次,试求:(1) 两次取出的都是红球的概率;(2)在第一次取出白球的条件下,第二次取出红球的概率;(3)第二次取到红球的概率.7.某工厂有三台设备生产同一型号零件,每台设备的产量分别占总产量的25%,35%,40%,而各台设备的废品率分别是0.05,0.04,0.02,今从全厂生产的这种零件中任取一件,求此件产品是废品的概率.8.两台车床加工同一种零件,加工出来的零件放在一起,已知第一台出现废品的概率是0.03,第二台出现废品的概率是0.02,且第一台加工的零件比第二台

13、加工的零件多一倍.(1)求任取一个零件是合格品的概率;(2)如果取出的是废品,求它是由第二台车床加工的概率.9.已知5%的男人和0.25%的女人是色盲,假设男人女人各占一半.现随机地挑选一人,求:(1)此人恰是色盲的概率是多少?(2)若随机挑选一人,此人是色盲,问他是男人的概率多大?(3)若随机挑选一人,此人不是色盲,问他是男人的概率多大?10.现有10张考签,其中4张是难签,甲、乙、丙三人抽签考试(取后不放回),甲先乙次丙最后,求下列事件的概率:(1)甲乙都抽到难签;(2)甲没有抽到难签,而乙抽到难签;(3)甲乙丙都抽到难签;(4)证明:甲乙丙抽到难签的机会均等.11.三个人向同一敌机射击,

14、设三人命中飞机的概率分别为0.4,0.5和0.7.若三人中只有一人击中,飞机被击落的概率为0.2;若有两人击中,飞机被击落的概率为0.6;若三人都击中,则飞机必被击落.求飞机被击落的概率.12.在上题中,假设三人的射击水平相当,命中率都是0.6,其他条件不变,再求飞机被击落的概率.13.已知一批产品中有95%是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率为0.03,求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品,它确实是合格品的概率.14.一个工人看管三台机床,在一小时内机床不需要工人看管的概率第一台为0.9,

15、第二台为0.8,第三台为0.7,且三台机床是否需要看管彼此独立.求在一小时内三台机床中最多有一台需要工人看管的概率.15.加工某一零件共需经过三道工序,设第一、第二、第三道工序的次品率分别是2%,3%,5%.假定各道工序是互不影响的,问加工出来的零件的次品率是多少?16.甲、乙、丙三人独立地破译一密码,他们各自能破译出的概率分别是0.4,0.6,0.7,求此密码被破译的概率.17.有甲、乙两批种子,发芽率分别为0.8和0.7,各在两批中随机取一粒,求:(1)两粒种子都能发芽的概率;(2)至多有一粒种子能发芽的概率;(3)至少有一粒种子能发芽的概率.18.一批产品有70%的一级品,进行重复抽样检

16、查,共抽取5件样品,求:(1)取出5件样品中恰有2件一级品的概率p1;(2)取出5件样品中至少有2件一级品的概率p2;(3)取出5件样品中至少有一件一级品的概率p3.19.一射手对一目标独立地射击4次,若至少命中一次的概率为击一次命中目标的概率.20.一射手对一目标独立地射击, 每次射击命中率为p, 求射击到第4次时恰80, 求射手射81好两次命中的概率.五、证明题1.设0<P(B)<1,证明事件A与B相互独立的充分必要条件是P(A|B)=P(A|B).2.证明条件概率的下列性质:(1)若P(B)>0,则0P(A|B)1,P(|B)=1,P(|B)=0;(2)若A与B互不相容

17、,P(C)>0,则P(A B|C)=P(A|C)+P(B|C); (3)P(A|B)=1-P(A|B).第二章随机变量及其概率分布一、单项选择题1.设随机变量X的分布律为则PX<1= ( ).A. 0 B. 0.2 C. 0.3 D. 0.52.设随机变量X的概率分布为则a= ( ).A. 0.2 B. 0.3 C. 0.1 D. 0.4c,x>13.设随机变量X的概率密度为f(x)=x2,则常数c = ( ).0,x1A. -1 B. 11 C. - D. 1 223ax,0x14.设随机变量X的概率密度为f(x)=,则常数a = ( ). 0,其它A. 11 B. C.

18、3 D. 4 425.下列函数中可作为某随机变量的概率密度函数的是 ( ).100,x>100 A.x2 B.x1000,10,x>0 x0,x013x22其它1-1,0x2,C. D. 20,其它0,6.设函数f(x)在区间a,b上等于sinx,而在此区间外等于0;若f(x)可以作为某连续型随机变量的概率密度函数,则区间a,b为 ( ).3 A. 0, B. 0, C. -,0 D. 0, 2227.下列函数中,可以作为某随机变量X的分布函数的是 ( ).x<00,0.5x,x<00.3,0x<1 A. F(x)= B. F(x)=0.8,0x<11,0.

19、2,1x<2x1x21,0,x<-x<00,20.1,0x<5C. F(x)= D. F(x)=sinx,-x<0 20.6,5x<6x01,x61,8.设F(x)是随机变量X的分布函数,则 ( ).A. F(x)一定连续 B. F(x)一定右连续C. F(x)是不增的 D. F(x)一定左连续9.设F(x)=P(Xx)是随机变量X的分布函数,则下列结论错误的是( ).A.F(x)是定义在(-,+)上的函数 B.limF(x)-limF(x)=1 x+x-C.P(a<Xb)=F(b)-F(a) D.对一切实数x,都有0<F(x)<1210.

20、设随机变量的概率分布为P(X=k)=a()k,(k=1,2,3.),则常数a=( ). 311 A. 1 B. C. 2 D. - 2211.已知随机变量X的分布律为( ). F(x)是X的分布函数,则F(2.5)=A. 0.7 B. 0.8C. 0.1 D. 12x,0<x<11112.随机变量X的概率密度f(x)=,则P-X=( ). 22其它0,A.1113 B. C. D. 342413.已知随机变量X的分布律为若随机变量Y=X2,则PY=1= ( ).A. 0.1 B. 0.3 C. 0.4 D. 0.214.设随机变量XB(4, 0.2),则PX>3= ( ).A

21、. 0.0016 B. 0.0272 C. 0.4096 D. 0.819215.设随机变量XN(1,4),Y=2X+1,Y ( ).A. N(1, 4) B. N(0, 1) C. N(3, 16) D. N(3, 9)16.设XN(,2),(x)是N(0, 1)的分布函数,则P(aXb)= ( ).A.(b)-(a) B.(b)+(a)C.(b-2)-(a-2) D.(b-)-(a-)17.设XN(-1,4),(x)是N(0, 1)的分布函数,则P(-2<X<0)= ( ).11 A.2()-1 B.(0)-(-2) C.(2)- D.(2)-(0) 2218.设XN(0,1)

22、,(x)是X的概率密度函数,则(0)= ( ).A. 0 B. 0.5C. D. 1 19.设X服从均匀分布U0,5,Y=3X+2,则Y服从 ( ).A. U0, 5 B. U2, 17 C. U2, 15 D. U0, 1720.某种商品进行有奖销售,每购买一件有0.1的中奖率.现某人购买了20件该商品,用随机变量X表示中奖的件数,则X的分布为 ( ).A.正态分布 B.指数分布 C.泊松分布 D.二项分布21.设X服从参数=2的泊松分布,F(x)是X的分布函数,则下列正确的选项是 ( ).A.F(1)=e-2 B.F(0)=e-2C.P(X=0)=P(X=1) D.P(X1)=2e-222

23、.设X服从参数的泊松分布,且P(X=1)=2P(X=3),则= ( ). 3A. 1 B. 2 C. 3 D. 4二、填空题1.若P(Xx2)=1-,P(Xx1)=1-,其中x1<x2, 则P(x1Xx2)=.2.设随机变量X的概率分布为记Y=X2, 则P(Y=4)=.3.若X是连续型随机变量, 则P(X=1)=.4.设随机变量X的分布函数为F(x), 已知F(2)=0.5, F(-3)=0.1, 则P(-3<X2)=.5.设随机变量X的分布函数为F(x)=x-e1-t22dt,则其密度函数为.0,x<06.设连续型随机变量X的分布函数为F(x)=sinx,0x<, 其

24、密度函数21,x2为f(x),则f()=.61-e-x,7.设随机变量X的分布函数为F(x)=0,x0x<0, 则当x>0时, X的概率密度f(x)=.8.设随机变量X的分布律为则P(0X1)=.9.设随机变量XN(3, 4), 则P(4<X<5)=. (其中(1)=0.8413,(0.5)=0.6915)10.设随机变量X服从参数为6的泊松分布, 写出其概率分布律. 11.若随机变量XB(4, 0.5), 则P(X1)=.12.若随机变量XU(0, 5),且Y=2X,则当0y10时, Y的概率密度fY(y)=. 13.设随机变量XN(0, 4),则P(X0)=.114

25、.设随机变量XU(-1, 1),则P(|X|)=.215.设随机变量X在2, 4上服从均匀分布,则P(2<X<3)=.X+1. 2a17.设随机变量X的分布律为P(X=k)=k,k=0,1,2,.,则a=.316.设随机变量XN(-1, 4),则Y=kx+1,0<x<218.设连续型随机变量X的概率密度为f(x)=,则k=. 其它0,19.若随机变量XN(1, 16),Y=2X-1,则Y.20.若随机变量XU(1, 6),Y=3X+2,则Y.三、计算题0,x<0 1.设连续型随机变量X的分布函数为F(x)=x2,0x<1,求X的概率密度1,x1函数.2.设X

26、服从参数p=0.2的0-1分布,求X的分布函数及P(X<0.5).3.设随机变量XU(a, b),求X的密度函数与分布函数.4.设随机变量XN(3, 4),求:(1)P(2<X<3);(2) P(-4<X<10);(3) P(|X|>2);(4)P(X>3).kx2,0<x<15.已知随机变量X的密度函数为f(x)=,求:(1)常数k;(2)其它0,分布函数;(3)P(-1<X<0.5).x,0<x<116.设随机变量X的概率密度为f(x)=,1x<2,求X的分布函数.2其它0,0x<1x,1137.设随

27、机变量Xf(x)=2-x,1x<2,求:(1)P(X);(2)P(<X<). 2220,其它8.设随机变量X在0,5上服从均匀分布,求方程4x2+4Xx+X+2=0有实根的概率.9.设随机变量X的分布律为求:(1)Y=2X的分布律;(2)Z=|X|的概率分布;(3)X2的分布律.10.设XU0,4,Y=3X+1,求Y的概率密度.11.已知随机变量XN(1,4),Y=2X+3,求Y的概率密度.12.已知X服从参数=1的指数分布,Y=2X-1,求Y的概率密度.四、应用题1.一批零件中有10个合格品和2个废品,安装机器时,从这批零件中任取一个,如果每次取出废品后不再放回,用X表示在

28、取得合格品以前已取出的废品的个数,求:(1)随机变量X的分布律;(2)随机变量X的分布函数.2.袋中有标号为1,2,2,3,3,3的六个球,从中任取一个球,求所取出的球的号码X的概率分布及分布函数.3. 袋中有标号为1,2,2,3,3,3的六个球,从中任取两个球,X表示取出的两个球的最大号码,求X的概率分布.4.设一批产品共1000个,其中40个是次品,随机抽取100个样品,按下列两种方式抽样,分别求样品中次品数X的概率分布.(1)不放回抽样;(2)有放回抽样.15.抛掷一枚质地不均匀的硬币,每次正面出现的概率为,连续抛掷10次,3以X表示正面出现的次数,求X的分布律.6.有一繁忙的交通路口,

29、每天有大量的汽车经过,设每辆汽车在一天的某段时间内出事故的概率为0.0001.在某天的该段时间内有1000辆汽车经过,问出事故的次数不小于2的概率.7.以电话交换台每分钟收到的呼唤次数服从参数为4的泊松分布,求:(1)每分钟恰有4次呼唤的概率;(2)每分钟的呼唤次数至少有4次的概率.8.袋中装有8个球,其中3个红球、5个白球,现从袋中任取3个球,求取出红球数的概率分布.9.已知某类电子元件的寿命X(单位:小时)服从指数分布,其概率密度为1x1-1000e,x>0, f(x)=10000,x0一台仪器装有3个此种类型的电子元件,其中任意一个损坏时仪器便不能正常工作,假设3个电子元件损坏与否

30、相互独立.试求:(1)一个此类电子元件能工作1000小时以上的概率p1;(2)一台仪器能正常工作到1000小时以上的概率p2.10.公共汽车车门的高度是按男子与车门顶碰头的机会在0.01以下来设计的.设男子身高X服从=170(厘米),=6(厘米)的正态分布,即XN(170,62).问车门高度应如何确定?五、综合题1.设10件产品中有2件次品,现进行连续无放回抽样,直至取到正品为止,求:(1)抽样次数X的概率分布;(2)X的分布函数F(x);(3)P(X>-2),P(1<X<3).12.司机通过某高速路收费站等候的时间X(单位:分钟)服从参数=的指5数分布.(1)求某司机在此收

31、费站等候时间超过10分钟的概率p;(2)若该司机一个月要经过此收费站两次,用Y表示等候时间超过10分钟的次数,写出Y的分布律,并求P(Y1).3.甲乙丙三人独立地等1,2,3路公共汽车,他们等车的时间(单位:分钟)都服从0,5上的均匀分布,求三人中至少有两人等车不超过2分钟的概率.4.设测量距离时产生的随机误差XN(0,102)(单位:米),现作三次独立测量,记Y为三次测量中误差绝对值大于19.6的次数,已知(1.96)=0.975.(1)求每次测量中误差绝对值大于19.6的概率p;(2)问Y服从何种分布,并写出其分布律;(3)求三次测量中至少有一次误差绝对值大于19.6的概率.5.设顾客在某

32、银行的窗口等待服务的时间X(单位:分钟)服从参数=1的10指数分布.某顾客在窗口等待服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y表示他未等到服务而离开窗口的次数.(1)写出Y的分布律;(2)求该顾客一个月至少有一次未等到服务而离开窗口的概率.6.设连续型随机变量X的分布函数为:x<00,F(x)=Ax2,0x<1,求:1,x1(1)系数A;(2)X的概率密度;(3)P(0.3<X0.7);(4)Y=X2的概率密度.7.连续型随机变量X的分布函数为F(x)=A+Barctanx,(-<x<+),求:(1)常数A,B;(2)P(-1<X<1)

33、;(3)X的概率密度.8.设X是连续型随机变量,其概率密度为:Ax2,0<x<2, f(x)=0,其它求:(1)系数A及分布函数F(x);(2)P(1<X<2);(3)Y=2X的概率密度.9.设X的分布律为:求:(1)Y=(X-1)2的分布律;(2)Y的分布函数;(3)P(-1Y2).第三章多维随机变量及其概率分布一、单项选择题1.设二维随机变量(X, Y)的分布律为:则P(X=Y)=A.0.3 B.0.5 C.0.7 D.0.8( ).132.设随机变量X与Y相互独立,且P(X=-1)=,P(Y=1)=,则P(XY=-1)=44( ).A.3131B. C. D.81

34、61643.设二维随机变量(X, Y)的分布律为:则P(X+Y1)= ( ). A.0.4 B.0.3 C.0.2 D.0.14.设二维随机变量(X, Y)的分布函数为F(x, y),则F(x,+)= ( ). A.0 B.FX(x) C.FY(y) D.15.设随机变量X与Y相互独立,且XN(3, 4), YN(2, 9), 则Z=3X-Y ( ). A.N(7,12) B.N(7,27) C.N(7,45) D.N(11,45)26.设二维随机变量(X,Y)N(1,2,12,2则Y ( ). ,),22A.N(1,12) B.N(1,2) C.N(2,12) D.N(2,2)7.二维随机变

35、量(X, Y)只取如下数组中的值(0, 0), (-1, 1), (-1, 应的概率依次为1), (2, 0),且相31115,,则c的值为 ( ). 2cc4c4cA.2 B.3 C.4 D.58.设随机变量(X, Y)的联合概率密度为f(x,y),则P(X>1)= ( ). A.dx-+11+-+f(x,y)dy B.+-+f(x,y)dx+-C.dy-f(x,y)dx D.dx1f(x,y)dyce-(2x+y),x>0,y>09.设二维连续型随机变量(X, Y)的概率密度为f(x,y)=,其它0,则常数c为 ( ).A.1 B.0.5 C.2 D.310.设二维随机变

36、量(X, Y)的分布函数为F(x, y),其边缘分布函数为FX(x)、FY(y),且对某一组x1,y1有F(x1,y1)=FX(x1)FY(y1),则下列结论正确的是( ).A.X和Y相互独立 B. X和Y不独立C. X和Y可能独立,也可能不独立 D. X和Y在点(x1,y1)处独立211.设二维随机变量(X,Y)N(1,2,12,2,),且X与Y相互独立,则( ). 2 A.1=2 B.=0 C.1=2,1=2 D. 12=2 212.设随机变量X与Y相互独立,且XN(1,12),YN(2,2),则下列结论正确的是 ( ).2 A.X+YN(1+2,(1+2)2) B.X+YN(1+2,12

37、+2) 22 C.X-YN(1-2,12-2) D.(X,Y)N(1+2,12+2)二、填空题1.设二维连续随机变量(X, Y)在区域G=(x,y)|x2+y24上服从均匀分布,则其概率密度f(x,y)=.2. 设二维随机变量(X, Y)的分布律为:则PX=1=,PY=1=.3.设随机变量X与Y相互独立,且其分布律分别为:则PX=Y=.4.设随机变量X与Y相互独立,其概率密度分别为:2e-2y,y>0e-x,x>0,fY(y)=, fX(x)=0,y00,x0则二维随机变量(X, Y)的联合概率密度为.1,0<x<1,0<y<15.设二维随机变量(X, Y)

38、的概率密度为f(x,y)=,则 其它0,1PX=. 2e-(x+y),x>0,y>06.设二维随机变量(X, Y)的概率密度为f(x,y)=,则当其它0,y>0时,(X, Y)关于Y的边缘概率密度fY(y)=.7.当0<x<1,0<y<1时,随机变量(X, Y)的分布函数F(x,y)=x2y2,其概率11密度为f(x,y),则f(,)=. 441,1x2,0y18.设二维随机变量(X, Y)的概率密度为f(x,y)=,则 其它0,31P(X,Y>)=. 22(x2+y2)1-1e29.设二维随机变量(X, Y)的概率密度为f(x,y)=,则(X,

39、 Y)关于X的2边缘概率密度fX(x)=.10.设二维随机变量(X, Y)的概率密度为:1(x+y),0x2,0y1, f(x,y)=3其它0,则(X, Y)关于X的边缘概率密度为.三、计算题1.已知二维离散型随机变量(X, Y)的联合分布为:(1)确定常数C;(2)求(X, Y)关于X,Y的边缘分布.2.已知二维离散型随机变量(X, Y)的联合分布为:求(X, Y)关于X,Y的边缘分布.3.设二维离散型随机变量(X, Y)的等可能值为(0, 0), (0, 1), (1, 0), (1, 1).求:(1) (X, Y)的联合概率分布律;(2) (X, Y)关于X, Y的边缘概率分布.14.设

40、二维随机变量(X, Y)只能取下列数组中的值:(0,0),(-1,1),(-1,),(2,0),31115且取这些值的概率依次为,. 631212(1)写出(X, Y)的分布律;(2)求(X, Y)关于X,Y的边缘分布律.5.设二维随机变量(X, Y)的分布律为:试问:X与Y是否相互独立?为什么?6.设二维随机变量(X, Y)的分布律为:(1)求边缘分布律;(2)试问X与Y是否相互独立?为什么?4xy,0<x<1,0<y<17.设二维随机变量(X, Y)的概率密度为f(x,y)=,求0,其它边缘概率密度.12222,x+yR8.设二维随机变量(X, Y)的概率密度为f(

41、x,y)=R,求边缘其它0,概率密度.9.已知二维随机变量(X, Y)的概率密度为:ax2+2xy2,0x1,0y1, f(x,y)=其它0,求:(1)常数a;(2)(X, Y)关于X,Y的边缘概率密度.10.设二维随机变量(X, Y)的分布律为:求:(1)Z1=X+Y的分布律;(2)Z2=XY的分布律.四、综合题1.箱子里装有12件产品, 其中2件是次品, 每次从箱子里任取一件产品, 共取两次, 定义随机变量X, Y如下:0,第二次取出正品0,第一次取出正品,Y=. X=1,第一次取出次品1,第二次取出次品(1)在有放回抽样情况下,求(X, Y)的分布律和边缘分布律,此时X与Y是否独立?(2

42、)在不放回抽样情况下,求(X, Y)的分布律和边缘分布律,此时X与Y是否独立?2.袋中有2个白球,3个黑球,现进行无放回地摸球,定义:1,第一次摸出白球1,第二次摸出白球,Y=. X=0,第一次摸出黑球0,第二次摸出黑球求:(1) (X, Y)的概率分布;(2) (X, Y)关于X,Y的边缘分布,并问X与Y是否相互独立?3.已知(X, Y)在区域G=(x,y)|0x2,0y1内服从均匀分布,求:(1) (X, Y)的联合概率密度;(2) (X, Y)关于X,Y的边缘概率密度,并问随机变量X与Y是否独立?(3) (X, Y)的分布函数.4.已知二维连续型随机变量(X, Y)的概率密度为:kxy2

43、,0x1,0y1, f(x,y)=其它0,求:(1)常数k;(2)(X, Y)关于X,Y的边缘概率密度.(3) X与Y是否相互独立?为什么?(4)P(X+Y1).5.设二维随机变量(X, Y)的概率密度为:求:(1)常数k;(2)P(0X1,0Y2);(3)(X, Y)的分布函数;(4)随机变量X与Y是否相互独立?f(x,y)=ke-(3x+4y),x>0,y>00,其它,6.设X与Y相互独立,X服从均匀分布U0, 15,Y的概率密度为:5e-5yf,y>0Y(y)=,0,y0求:(1)随机变量(X, Y)的概率密度;(2)P(YX).第四章随机变量的数字特征一、单项选择题1

44、.随机变量X的概率分布律为则期望EX=A.1.2 B.1.3 C.1 D.1.12.随机变量X的概率分布律为( ).则方差DX= ( ).A.1.69 B.2.5 C.1.6 D.3.43.设随机变量X服从参数为2的指数分布,则下列各项中正确的是 ( ).A.EX=0.5, DX=0.25 B. EX=2, DX=2C.EX=0.5, DX=0.5 D. EX=2, DX=44.设随机变量X与Y相互独立,X服从参数为2的指数分布,YB(6, 0.5),则E(X-Y)= ( ).A.-2.5 B.0.5 C.2 D.55.设随机变量X与Y相互独立,XB(16, 0.5),Y服从参数为9的泊松分布

45、,则D(X-2Y+3)= ( ).A.-14 B.-11 C.40 D.432x,0<x<16.已知随机变量X的概率密度f(x)=,则EX与DX分别为( ). 0,其它21212111A., B., C.,- D., 31836218367.已知随机变量X服从均匀分布U1, 5,则下列各项中正确的是 ( ).44 B. EX=3, DX= 3311 C.EX=3, DX= D. EX=2, DX= 33 A.EX=2, DX=8.设X为随机变量,EX=2,DX=5,则E(X+2)2 = ( ).A. 4 B.9 C.13 D.219.已知随机变量X服从参数为的泊松分布,且P(X=1

46、)=P(X=2),则X的期望EX= ( ).A. 0 B.1 C.2 D.310.设X服从0,1上的均匀分布,则D(2X)= ( ).A.1111 B. C. D. 3612411.设随机变量X与Y相互独立,XN(2, 42), YN(3, 32),则E(X+Y), D(X-Y)的值分别为 ( ).A.5,7 B.5,25 C.5,5 D.5,7212.设二维随机变量(X,Y)N(1,2,12,2,),若=0,则 ( ).A. X与Y一定独立 B. X与Y一定不独立C. X与Y不一定独立 D. X与Y仅不相关,但不独立13.设X与Y为两个随机变量,且X,Y=0,则 ( ).A. X与Y一定独立

47、 B. X与Y不相关C. X与Y独立且不相关 D. X与Y仅不相关,但不独立14设随机变量XN(2, 4), 则D(2X+5)= (A. 4 B.8 C.16 D.2115.设随机变量X的分布函数F(x)=1-e-2x,x>0,则EX与DX为 (0,x0A.2,4 B.0.25,0.5 C.0.5,0.25 D.4,216.已知DX=1,DY=25,X,Y=0.4,则D(X-Y)= (A. 6 B.22 C.19 D.2317.已知DX=4,DY=9,X,Y=-0.5,则D(2X-3Y)= (A.133 B.61 C.71 D.10318.设随机变量X与Y的协方差Cov(X,Y)=16,

48、且DX=4,DY=9,则X,Y=(A.111216 B.36 C.6 D.119.若随机变量X与Y满足E(XY)=EXEY,则下列结论不正确的是 (A. X与Y不相关 B. X与Y相互独立C.D(X±Y)=DX+DY D.相关系数X,Y=020.已知二维离散型随机变量(X, Y)的分布律为:则E(X+Y)与E(XY)分别是 ( ). ). ). ). ). ). ).A.2.1,0.8 B.2.5,0.8 C.2.3,0.2 D.2.3,0.8二、填空题1.设随机变量X的期望EX=2,方差DX=4,则E(X2)=.22.设随机变量X与Y相互独立,且XN(1,12),YN(2,2),则

49、E(X+Y)=,D(X+Y)=.3.设随机变量X与Y相互独立,且XN(1, 4),YB(10, 0.2),则E(2X-3Y)= ,D(2X-3Y)=.4.随机变量X服从0-1分布,且EX=0.2,则P(X=0)=.5.设随机变量X服从参数为3的指数分布,则D(2X+1)=.6.设随机变量X的分布律为则E(X2)=.7.已知二维离散型随机变量(X, Y)的分布律为:则E(XY)=.8.设随机变量X与Y相互独立,且DX>0, DY>0,则X与Y的相关系数=.9.设随机变量X与Y相互独立,其分布律分别为:则E(XY)=,D(X-Y)=.10.设随机变量XN(0, 1),YN(0, 1),

50、Cov(X,Y)=0.5,则D(X+Y)=.11.设DX=9,DY=25,相关系数X,Y=0.5,则D(X-Y)=.12.设随机变量X与Y相互独立,且EX=EY=0,E(X2)=E(Y2)=1,则E(X+Y)2=,D(X+Y)=.113.已知二维随机变量(X,Y)N(1,1,4,9,),则Cov(X,Y)=. 214.设随机变量X的分布律为令Y=2X+1,则EY=.1n15.设随机变量X1,X2,.,Xn独立同分布,且均值为, 若Y=Xi,则EY= ni=1.三、计算题1.设随机变量X的分布律为求:(1)EX;(2)E(X2);(3)E(3X3+5).2.设随机变量X的分布律为求:期望EX与方

51、差DX.6x(1-x),0<x<1 3.设随机变量X的概率密度为f(x)=,求:期望EX与方差其它0,DX.|x|<14.设随机变量X的概率密度为f(x)=,求:期望EX与方差0,|x|1DX.0x1x,5.设随机变量X的概率密度为f(x)=2-x,1<x<2,求:期望EX与方差DX.0,其它6.设随机变量X与Y相互独立,且X服从参数=2的泊松分布,Y的概率密度1,0<x<4为f(x)=4,求:(1)E(X+2Y),E(XY);(2)D(X-2Y+3).0,其它7.已知二维随机变量(X, Y)的概率分布为求:协方差Cov(X,Y)与相关系数X,Y.8.

52、设(X, Y)在圆域G=(x,y)|x2+y2R2内服从均匀分布,求Cov(X,Y).四、应用题1.甲、乙两台自动车床,生产同一种标准件,生产1000只所出的次品数分别用X、Y来表示,经过一段时间的考察,X、Y的分布律分别为:问哪一台机床加工的产品质量好?2.某车间生产的圆盘直径服从均匀分布Ua,b,求圆盘面积的期望.3.有甲、乙两种牌号的手表,它们日走时的误差(单位:秒)分别记作X、Y,且日走时误差所服从的分布律如下:问哪种牌号的手表质量更好?4.设市场上每年对某厂生产的29寸彩色电视机的需求量是随机变量X(单位:万台),它均匀分布于10,20.每出售一万台电视机,厂方获得利润50万元,但如

53、果因销售不出而积压在仓库里,则每一万台需支付库存费10万元,问29寸彩色电视机的年产量应定为多少台,才能使厂方的平均收益最大?五、综合题1.设随机变量X的概率密度在0,1之外为0,在0,1上的密度与x2成正比.求:(1)X的分布函数;(2)期望EX和方差DX.2.设X服从参数为的泊松分布,已知P(X=2)=P(X=3),且P(X<4)=aP(X=0),求:(1)常数a;(2)E(2X+1)(2X-1).3.设随机变量X与Y相互独立,它们的概率密度分别为:2e-2x,x>04e-4y,y>0. fX(x)=,fY(y)=x0y00,0,求:(1)E(X+Y),E(XY);(2)

54、D(X+Y),D(2X-3Y).4.设XN(5, 5),Y在0,上服从均匀分布,相关系数X,Y=0.5,求:E(X-2Y)和D(X-2Y).5.设随机变量X1,X2,.,Xn相互独立,且服从同一分布,期望为,方差为2,1n令X=Xi,求:EX,DX. ni=16.设二维随机变量(X, Y)的分布律为:求:(1)边缘概率分布;(2)协方差Cov(X,Y)与相关系数;(3)问随机变量X与Y是否独立?是否相关?12y2,0yx17.设(X, Y)的概率密度f(x,y)=, 0,其它求:(1)边缘概率密度;(2)EX,EY;(3)Cov(X,Y).x,0x28.设随机变量Xf(x)=2,试求:(1)EX,DX;(2)D(2-3X); 0,其它(3)P(0<X<1).9.设连续型随机变量X的分布函数为:0,x<0xF(x)=,0x<8, 8x81,求:(1)X的概率密度f(x);(2)EX,DX; (3)P|X-EX|ax+b,0x1710.设随机变量Xf(x)=,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论