多目标物流配送模型的优化研究图文精_第1页
多目标物流配送模型的优化研究图文精_第2页
多目标物流配送模型的优化研究图文精_第3页
多目标物流配送模型的优化研究图文精_第4页
多目标物流配送模型的优化研究图文精_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、物流平台多目标物流配送模型的优化研究黄金铝王喜成桂林电子科技大学管理学院摘要在物流网络配送运输中,涉及到多种目标的规划,采用多目标规划法对物流网络配送系统进行建模优化;其中,针对目标规划中目标优先级确定的困难,提出判断矩阵法对目标进行排序,为优先级划分提供关键依据;根据线形规划和序贯式算法原理,文中采用软件对模型进行分步求解,最终得出一个满意方案,为决策者提供决策参考。关键词多目标目标规划物流配送判断矩阵引言物流网络配送是现代物流管理系统中至关重要的部分,直接涉及到企业的生存和发展。而现代物流网络配送,不仅仅要考虑企业物流配送的成本,还要考虑到客户关系的特殊性,如一般客户和伙伴客户的区别服务;

2、同时,还应考虑与物流中心的战略配合,考虑到交通运输系统的局限性等一系列有利于整个供应链优化的因素。我们面对的是多个目标的规划,而不是对单一方面的追求最优,必须有效地对所有目标进行合理规划,让整个供应链趋于优化。之前,有许多学者对这方面也做过研究,如石琴、陈朝阳等提出了一种获得最优解集的简单算法,解决了配送费用和最大单程费用最小的双目标数学模型,避免了传统多目标问题转化成单目标时的目标间量纲不统一及目标权重确定的问题,但忽略了当所考虑目标较多时,集合求解的复杂性,以及决策者对目标规划参与重要性。对此,我们在传统多目标规划中的目标规划法基础上,采用判断矩阵法对决策者制定的目标群进行排序,并划分优先

3、级,进而进行求解。通过检验,证明了该模型的科学性和合理性。一、问题描述一般物流网络配送问题描述设生产企业、物流中心和商品需求城市的位置及各部分的营运费用已知,生产企业到物流中心的单位运费为;物流中心到商品需求点的单位运费为;单位货物在物流中心的操作费为;在某周期内商品需求点对生产企业产品需求量为,如图所示。如何调配,才能实现目标,。一般目标规划模型描述设(,)是目标规划的决策变量,共有个约束是刚性约束,它们可能是等式约束,也可能是不等式约束。设有个柔性目标约束,其目标规划约束的偏差为,(,),为负偏差变量,表示未达到目标值的数;为正偏差变量,表示超过目标值的数。设有个优先级别,分别为,在同一个

4、优先级中,有不同的权重,分别记为,(,),因此目标规划模型的一般数学表达式为:()计算一致性比例。表。当时,认为判断矩阵己经具有满意的一致性,可以用来确定权系数,否则就要重新评估各目标之间的相对重要性,调整判断矩阵,按上述步骤重新确定权系数。()优先级的确定:把目标按权重从大到小排列,结合决策者的计划及模型本身的限制,如单位差异等,把各目标归入不同的优先等级,通常权重大的优先级高。一般而言,优先级个数不超过个。单纯形算法和序贯式算法,其中是随机一致性指标,见因此,必须进行一致性检验。满足一致性的标准是的最大特征根计算。检验步骤为:()一致性检验:对于一个合理的互反判断矩阵,各元素之间应满足完全

5、一致性条件,即:()()目标权重的确定:在判断矩阵法中,针对互反型判断矩阵可以采用方根法求出目标权重,即:(,)其中当()时,须;当()时,须。二、模型的求解通过判断矩阵对目标进行权重计算,并对目标按权重从大到小的顺序排序,同时,划分优先级,。之后,对目标规划模型进行求解,求解方法采用单纯性法。下面进行具体的求解步骤分析。目标优先级划分目标优先级的划分有以下四个步骤:()构造二元判断矩阵:常采用九标度法,即把各目标之间重要性的二元比度关系根据语气程度模糊地划分为九个等级,使其与等个数字相对应(见表),使各目标之间的二元比度关系得以度量的统一化及数值化,并以此构造二元比较矩阵:()()其中,对于

6、目标函数(),当()时,须;年期物流平台()多目标规划单纯形法多目标规划的单纯形法与单目标规划的单纯形法本质上是相同的,但由于目标规划数学模型有自身的特点,因此,做以下规定:因目标规划本身问题的目标函数都是求最小化,所以检验数,为最优准则;因非基变量的检验数中含有不同等级的优先因子,即,检验数的正、负首先决定于的系数的正、负,若,这时检验数的正、负就决定于的系数的正、负,以下依次类推。()序贯式算法序贯式算法是求解目标规划的一种早期算法,其核心是根据优先级的先后次序,将目标规划问题分解成一系列的单目标规划问题,然后再依次求解。()其他约束:()满足各需求点的对各种货品需求量。()()在各物流中

7、心容量条件下进行调配。()目标排序()专家、决策者给各目标进行标度以进行判断矩阵构造。应当注意的是,对于目标当中隐含的刚性约束,如上和,必须绝对满足,因此,相对其他的目标必须赋予高的标度,以保证其处于高优先级;其他目标视决策者的偏好和计划给与赋值。我们构造标度矩阵如表。()用方根法,通过求得目标权重如下:()一致性检验计算得,符合一致性检验,因此,该目标权重可用。按权重由大到小排序可分为个优先级:,。由以上三步可得目标函数:()最终求解结果一般目标规划的修正单纯形法求解。这里,由于线形规划实际上是目标规划的一种特殊情况。根据序贯式算法,我们采用求解线性多目标问题,解得:,其他为。三、案例分析设

8、某物流网络图如上页图,其中,仓库的容量,;工厂和物流中心的广义费用见表;需求区对商品的需求量见表。应如何调配运输,使以下目标达到最优化。:在满足各需求点的各种货品需求的条件下,使总费用尽量小。:由于交通问题,从工厂经物流至需求点的货量不能超过。:为了充分利用物流中心的优势,尽量使经过的货流量达到最大。:由于需求点是合作伙伴,在满足其需求量的前提下,尽量使其配送成本达到最低。:因战略规划,通过物流中心的产品和的货量按的比例安排。决策变量:表示但生产企业产品经物流中心到需求点的需求量。求解如下:目标约束函数()()()四、总结从求解结果中,我们可以清楚地看到各配送路线及配送量,符合目标群的要求。其中,说明总成本为,为合作伙伴的配送成本;为了满足的要求,结果显示,是把,分了出来;目标满足了使得物流中心货流量最大的要求。假如决策者不满意目标的偏重,可以调整判断矩阵,重新排序,再进行求解,可以得到多种方案。本文,基于多目标规

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论