版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二章微积分学的创始人: 德国数学家 Leibniz 微分学导数导数描述函数变化快慢微分微分描述函数变化程度都是描述物质运动的工具 (从微观上研究函数)导数与微分导数思想最早由法国数学家 Ferma 在研究极值问题中提出.英国数学家 Newton一、引例一、引例二、导数的定义二、导数的定义三、导数的几何意义三、导数的几何意义四、函数的可导性与连续性的关系四、函数的可导性与连续性的关系五、单侧导数五、单侧导数第一节第一节机动 目录 上页 下页 返回 完毕 导数的概念导数的概念 第二章 一、一、 引例引例1. 变速直线运动的速度变速直线运动的速度设描述质点运动位置的函数为)(tfs 0t那么 到
2、的平均速度为0tt v)()(0tftf0tt 而在 时刻的瞬时速度为0t lim0ttv)()(0tftf0tt 221tgs so)(0tf)(tft自由落体运动机动机动 目录目录 上页上页 下页下页 返回返回 完毕完毕 xyo)(xfy C2. 曲线的切线斜率曲线的切线斜率曲线)(:xfyCNT0 xM在 M 点处的切线x割线 M N 的极限位置 M T(当 时)割线 M N 的斜率tan)()(0 xfxf0 xx切线 MT 的斜率tanktanlim lim0 xxk)()(0 xfxf0 xx机动 目录 上页 下页 返回 完毕 两个问题的共性:so0t)(0tf)(tft瞬时速度
3、lim0ttv)()(0tftf0tt 切线斜率xyo)(xfy CNT0 xMx lim0 xxk)()(0 xfxf0 xx所求量为函数增量与自变量增量之比的极限 .类似问题还有:加速度角速度线密度电流强度是速度增量与时间增量之比的极限是转角增量与时间增量之比的极限是质量增量与长度增量之比的极限是电量增量与时间增量之比的极限变化率问题机动 目录 上页 下页 返回 完毕 二、导数的定义二、导数的定义定义定义1 . 设函数设函数)(xfy 在点0 x0limxx00)()(xxxfxfxyx0lim)()(0 xfxfy0 xxx存在,)(xf并称此极限为)(xfy 记作:;0 xxy; )(
4、0 xf ;dd0 xxxy0d)(dxxxxf即0 xxy)(0 xf xyx0limxxfxxfx)()(lim000hxfhxfh)()(lim000则称函数假设的某邻域内有定义 , 在点0 x处可导, 在点0 x的导数. 机动 目录 上页 下页 返回 完毕 运动质点的位置函数)(tfs so0t)(0tf)(tft在 时刻的瞬时速度0t lim0ttv)()(0tftf0tt 曲线)(:xfyC在 M 点处的切线斜率xyo)(xfy CNT0 xMx lim0 xxk)()(0 xfxf0 xx )(0tf )(0 xf 说明说明: 在经济学中在经济学中, 边际成本率,边际劳动生产率和
5、边际税率等从数学角度看就是导数.机动 目录 上页 下页 返回 完毕 0limxx00)()(xxxfxfxyx0lim)()(0 xfxfy0 xxx若上述极限不存在 ,在点 不可导. 0 x假设,lim0 xyx也称)(xf在0 x若函数在开区间 I 内每点都可导,此时导数值构成的新函数称为导函数.记作:;y; )(xf ;ddxy.d)(dxxf注意注意:)(0 xf 0)(xxxfxxfd)(d0就说函数就称函数在 I 内可导. 的导数为无穷大 .机动 目录 上页 下页 返回 完毕 例例1. 求函数求函数Cxf)(C 为常数) 的导数. 解解:yxCCx0lim0即0)(C例例2. 求函
6、数求函数)N()(nxxfn.处的导数在ax 解解:axafxf)()(ax lim)(af axaxnnaxlim(limax1nx2nxa32nxa)1na1nanxxfxxf)()(0limx机动 目录 上页 下页 返回 完毕 说明:说明:对一般幂函数xy ( 为常数) 1)(xx例如,例如,)(x)(21 x2121xx21x1)(1x11x21x)1(xx)(43x4743x(以后将证明)机动 目录 上页 下页 返回 完毕 hxhxhsin)sin(lim0例例3. 求函数求函数xxfsin)(的导数. 解解:,xh令那么)(xf hxfhxf)()(0limh0limh)2cos(
7、2hx 2sinh)2cos(lim0hxh22sinhhxcos即xxcos)(sin类似可证得xxsin)(cosh机动 目录 上页 下页 返回 完毕 )1(lnxh例例4. 求函数求函数xxfln)(的导数. 解解: )(xf hxfhxf)()(0limhhxhxhln)ln(lim0hh1lim0)1(lnxh即xx1)(ln0limhh1x1xx10limh)1(lnxhhxelnx1x1xhhh1lim0或机动 目录 上页 下页 返回 完毕 则令,0hxt原式htfhtfh2)()2(lim0)(lim0tfh)(0 xf 是否可按下述方法作:例例5. 证明函数证明函数xxf)(
8、在 x = 0 不可导. 证证:hfhf)0()0(hh0h,10h,1hfhfh)0()0(lim0不存在 , .0不可导在即xx例例6. 设设)(0 xf 存在, 求极限.2)()(lim000hhxfhxfh解解: 原式原式0limhhhxf2)(0)(0 xfhhxf2)( 0)(0 xf)(210 xf )(210 xf )(0 xf )( 2 )(0hhxf)(0 xf机动 目录 上页 下页 返回 完毕 三、三、 导数的几何意义导数的几何意义xyo)(xfy CT0 xM曲线)(xfy 在点),(00yx的切线斜率为)(tan0 xf 假设,0)(0 xf曲线过上升;假设,0)(0
9、 xf曲线过下降;xyo0 x),(00yx假设,0)(0 xf切线与 x 轴平行,称为驻点;),(00yx),(00yx0 x假设,)(0 xf切线与 x 轴垂直 .曲线在点处的),(00yx切线方程切线方程:)(000 xxxfyy法线方程法线方程:)()(1000 xxxfyy)0)(0 xfxyo0 x,)(0时 xf机动 目录 上页 下页 返回 完毕 1111例例7. 问曲线问曲线3xy 哪一点有垂直切线 ? 哪一点处的切线与直线131xy平行 ? 写出其切线方程.解解:)(3xy3231x,13132x,0 xy0 x令,3113132x得,1x对应,1y则在点(1,1) , (1
10、,1) 处与直线131xy平行的切线方程分别为),1(131xy) 1(131xy即023 yx故在原点 (0 , 0) 有垂直切线机动 目录 上页 下页 返回 完毕 处可导在点xxf)(四、四、 函数的可导性与连续性的关系函数的可导性与连续性的关系定理定理1.处连续在点xxf)(证证: 设)(xfy 在点 x 处可导,)(lim0 xfxyx存在 , 因此必有,)(xfxy其中0lim0 x故xxxfy)(0 x0所以函数)(xfy 在点 x 连续 .注意注意: 函数在点函数在点 x 连续未必可导连续未必可导.反例反例:xy xyoxy 在 x = 0 处连续 , 但不可导.即机动 目录 上
11、页 下页 返回 完毕 在点0 x的某个右 邻域内五、五、 单侧导数单侧导数)(xfy 若极限xxfxxfxyxx)()(limlim0000则称此极限值为)(xf在 处的右 导数,0 x记作)(0 xf即)(0 xfxxfxxfx)()(lim000(左)(左)0( x)0( x)(0 xf0 x例如例如,xxf)(在 x = 0 处有,1)0(f1)0(fxyoxy 定义定义2 . 设函数设函数有定义,存在,机动 目录 上页 下页 返回 完毕 定理定理2. 函数函数在点0 x)(xfy ,)()(00存在与xfxf且)(0 xf. )(0 xf)(0 xf 存在)(0 xf)(0 xf简写为
12、在点处右 导数存在0 x定理定理3. 函数函数)(xf)(xf在点0 x必 右 连续.(左)(左)若函数)(xf)(af)(bf与都存在 , 则称)(xf显然:)(xf在闭区间 a , b 上可导,)(baCxf在开区间 内可导,),(ba在闭区间 上可导.,ba可导的充分必要条件是且机动 目录 上页 下页 返回 完毕 内容小结内容小结1. 导数的实质:3. 导数的几何意义:4. 可导必连续, 但连续不一定可导;5. 已学求导公式 :6. 判断可导性不连续, 一定不可导.直接用导数定义;看左右导数是否存在且相等. )(C )(x )(sin x )(cosxaxf)(02. axfxf)()(
13、00 )(ln x;0;1x;cosx;sin xx1增量比的极限;切线的斜率;机动 目录 上页 下页 返回 完毕 思考与练习思考与练习1. 函数函数 在某点在某点 处的导数处的导数)(xf0 x)(0 xf )(xf 区别:)(xf 是函数 ,)(0 xf 是数值;联络:0)(xxxf)(0 xf 注意注意:有什么区别与联系 ? )()(00 xfxf?与导函数机动 目录 上页 下页 返回 完毕 2. 设设)(0 xf 存在 , 那么._)()(lim000hxfhxfh3. 知知,)0(,0)0(0kff那么._)(lim0 xxfx)(0 xf 0k4. 假设假设),(x时, 恒有,)(
14、2xxf问)(xf是否在0 x可导?解解:由题设)0(f00)0()(xfxfx0由夹逼准则0)0()(lim0 xfxfx0故)(xf在0 x可导, 且0)0( f机动 目录 上页 下页 返回 完毕 5. 设设0,0,sin)(xxaxxxf, 问 a 取何值时,)(xf 在),(都存在 , 并求出. )(xf 解解:)0(f00sinlim0 xxx1)0(f00lim0 xxaxa故1a时,1)0( f此时)(xf 在),(都存在, )(xf0,cosxx0,1x显然该函数在 x = 0 连续 .机动 目录 上页 下页 返回 完毕 作业作业 P85 2 , 5 , 6, 9, 13, 1
15、4(2) , 16 , 18 第二节 目录 上页 下页 返回 完毕 牛顿牛顿(1642 1727)伟大的英国数学家 , 物理学家, 天文学家和自然科学家. 他在数学上的卓越贡献是创立了微积分. 1665年他提出正流数 (微分) 术 , 次年又提出反流数(积分)术,并于1671年完成一书 (1736年出版).他还著有和等 .莱布尼兹莱布尼兹(1646 1716)德国数学家, 哲学家.他和牛顿同为微积分的创始人 , 他在杂志上发表的几篇有关微积分学的论文中,有的早于牛顿, 所用微积分符号也远远优于牛顿 . 他还设计了作乘法的计算机 , 系统地阐述二进制计数法 , 并把它与中国的八卦联系起来 .备用题备用题 解解: 因为因为1. 设设)(xf 存在, 且, 12)1 () 1 (lim0 xxffx求).1 (f xxffx2)1 () 1 (lim0所以. 2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《肝癌与其他》课件
- 2024年版:工程机械短期租赁协议
- 《在大多数广告中》课件
- 2025年四川货运从业考试试题及答案详解
- 2024年度建筑工程碎石材料采购合同模板2篇
- 2024年建筑排水工程分包标准协议模板版B版
- 2024年度高科技产业园区土地使用权永久出让及税收优惠协议3篇
- 2024年物资运送联盟协议
- 2025弯脚质检科长业绩合同书
- 2024年城市绿化带施工安装及养护管理合同2篇
- 2023-2024学年山东省胶州市初中语文九年级上册期末自测测试题
- 人力资源专员招聘笔试题
- LY/T 1646-2005森林采伐作业规程
- GB/T 7714-2015信息与文献参考文献著录规则
- GB/T 7531-2008有机化工产品灼烧残渣的测定
- GB/T 19963.1-2021风电场接入电力系统技术规定第1部分:陆上风电
- GB/T 13586-2006铝及铝合金废料
- 二年级上册数学试题-应用题复习6-人教新课标(2014秋)(无答案)
- 丽声北极星分级绘本第一级上Tiger-Is-Coming课件
- 2023年哈工大模电大作业
- 高考作文 论证方法汇总
评论
0/150
提交评论