




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第6章 薄板弯曲问题的有限单元法 l薄板弯曲问题的基本方程l薄板弯曲问题的非协调矩形单元l非协调三角形板单元l薄板弯曲问题的协调元6.1 薄板弯曲问题的基本方程1 弹性薄板的基本假设(克希霍夫假设)无挤压 薄板弯曲时,平行于中面的各层面之间无挤压。这意味着薄板弯曲后厚度保持不变,因此可取 。显然挠度w只是x,y的函数:0/zwz(1) ),(yxww 0, 0zvywxwzuyzzx直法线 变形前垂直于中面的直线段,变形后仍为直线,且仍然垂直于弯曲后的中面。这意味着yz和zx平面内的剪应变为零ywzvxwzu,0)(, 0)(00zzvu从而得:无侧移 薄板中面内各点都没有平行于中面的侧向位移
2、,即结合几何方程可知,中面内形变分量均为零,即. 0)(, 0)(, 0)(000zxyzyzx从上述的附加假设出发,可以将位移u、v用w表示。推导得(2) ,zywvzxwu这就是薄板弯曲问题的克希霍夫(Kirchhoff)假设,使用克希霍夫假设计算的板称为克希霍夫板。将用 w 表示的位移 u ,v 代入几何方程这里,记 为(3) 2T22222zyxwywxwzxyyx(4) 222222Tyxwywxw称为薄板的广义应变分量。薄板中的应力210001011002DzDExyyxxyyx(5) 12d03/2/2-DDhzzMMMMhhxyyx123Mhz622/MhhzD0是平面应力问题
3、的物理矩阵薄板内力D是板的弯曲刚度矩阵显然最大应力发生在薄板的上下表面2 弹性薄板的几点简化l应力分量的减少l应变分量的减少l位移之间有了附加关系l应力应变关系的简化0z0 0yzzx,zzywvzzxwuyxwwxy , ),(xyyxxyyxE21000101121 薄板弯曲问题节点位移参数的选择采用克希霍夫假设后, 薄板的变形状态完全由一个变量,即中面挠度 w(x, y) 来确定。然而,在有限元法中只取挠度本身作为节点位移参数是不够的。按克希霍夫理论,薄板内部非中面上各点的位移 (u,v,w) 是用相应的中面点的挠度w(x, y)和该点处中面法线转角x和y来表示的(2式)。因而,为了保证
4、板内位移 (u,v,w) 在整个求解区域内单值连续,除要求w在全域内单值连续外,还必须要求x和y在全域内也是单值连续的。这里xwywyx, 6.2 矩形薄板单元 将只要求函数本身连续的问题称为C0问题,如弹性力学平面问题;将不但函数本身,还要求其一阶导数连续的问题称为C1问题,如薄板弯曲问题。iiiyixiiixwywww)/()/(如果将位移模式仍然取为多项式,要求在全域内位移及一阶导数连续,这等价于在单元边界上要保证位移及一阶导数连续,因此在单元结点上必须保证位移及一阶导数连续,即应选取三个结点位移参数如果取四节点单元,则取位移函数为31231131029283726524321xyyxy
5、xyyxxyxyxyxw两个四次项的选取,保证了在单元边界上,即x=const,y=const时,位移是三次多项式。3423213123113102928372652432134232131231131029283726524321),(),(yByByBBdyydydyyddydydydydwxAxAxAAxccxcxccxxcxcxcxcxw位移连续性问题。 在 ij 边上,y=const,共有四个参数,可由ij边两端节点的位移参数唯一确定,因此在相邻单元的公共边界上,位移w及其切向导数 是连续的。342321xAxAxAAwjjiixwwxww)( )( ,)(即xwsw/仍有四个参数,
6、但是节点参数只有两个 ,无法唯一确定法向导数。也就是说,在两个相邻单元的公共边界上,位移模式w的法向导数 并不相同。再来看法向导数。法向导数 为342321yBxBxBByw)(即ywnw/jiywyw)()(/,/nw /由以上讨论和进一步的研究可以得出结论,仅规定位移 w及其一阶导数 作为节点位移参数时,取位移模式为简单多项式,要保证单元边界上位移 w的法向导数连续是不可能的,常称这样的单元为不完全协调元。不完全协调元的位移模式只满足了“收敛准则”的完备条件,而未满足协调条件。有关其收敛性的问题需要再讨论。但是计算实践表明,这里所给出的不完全协调四节点矩形单元的计算结果是收敛的ywxw/,
7、2 位移模式将矩形薄板沿坐标方向划分为若干矩形单元,每个单元设有四个节点,每个节点有三个位移分量,即挠度 w,绕y轴转角x, 绕 x 轴转角y。即(6) )4 , 3 , 2 , 1()/()/(ixwywwwiiiyixiii单元的节点位移为节点荷载为单元的节点荷载为TTTTTe 4321)4 , 3 , 2 , 1(iMMVFyixiiiTTTTTeFFFFF 4321取位移函数为(7) 31231131029283726524321xyyxyxyyxxyxyxyxw2123112109286533122112982754233223232xyxyxyxyyywyyxyxyxxxxw在位移
8、函数中,前三项包含了单元的刚体位移状态,二次项代表了单元的均匀应变状态。可以证明,此位移模式能够保证相邻单元的公共边界上挠度 w 和转角的连续性。分别求出上式中对 x,y 的导数将单元四个节点的坐标分别代入前三式后,可得12个关于i 的方程组,求解后代回(7)式,令(8) 44332211eNNNNNwyixiiiNNNNbyyaxx/ )( ,/ )(00ii,) 4 , 3 , 2 , 1() 9 ( 8/ )1)(1 ()1 (8/ )1 ()1)(1 (8/ )2)(1)(1 (2222 iabNNNNiiiiiiiiiiiixixiii其中称N为形函数矩阵,第i个子矩阵为 为节点的坐
9、标值,则将形函数(9)代入(3)式,得出(10)22222222222222eeTTBNabwbwawyxwywxw这里的B称为应变矩阵pmjiBBBBB 第i个子矩阵Bi为),( 22222222pmjiiNabwbwawBiTi3 势能泛函与有限元模式板的势能泛函可写成(11) d)(dddd211T esnneeeeesnwMwVyxwpyxD将(10)式代入(11)式得(12)d)(dddd)(211TT esenneeeeeesNymxlMNVyxNpyxBDB按最小势能原理(13) 0ee将(12)式代入(13)式得(14) d)(dddd 1TTTTesnneeeesNymxlM
10、NVyxNpyxBDB记esnneeeesNymxlMNVyxNpRyxBDBK1d)(dddd TTTT得出eeeeeRK(15) RK4 不完全谐调元的分片检验前面说明,薄板不完全协调矩形单元的位移插值函数不能满足“收敛准则”所要求的协调条件,但是计算结果表明是收敛的。如何判断此种不完全协调元计算结果的收敛性呢?埃恩斯提出“分片检验”的概念,并指出:位移插值函数能否通过“分片检验”,是判断不完全协调计算结果是否收敛的充分必要条件。 “分片检验”的具体做法如下,任意取一个至少有一个内部节点的,由若干个单元组成的拼片,并且:在内部节点上既不允许有载荷,也不允许有约束。当把任何一种与常应变状态对
11、应的节点位移或节点力加到该单元拼片的边界节点上时,用某种位移插值函数计算得到单元拼片内部的位移符合常应变状态的条件,则说该位移插位函数能够通过“分片检验”。经检验表明,前面介绍的不完全协调矩形元能够通过 “ 分片检验 ”,因而计算结果是收敛的。 6.3 三角形板单元三结点板单元,每个结点三个位移参数iyixiw,1,2,3)(i )(21ycxbaALiiii每个单元共有9个参数。如果位移函数取为多项式,则一个完备的三次多项式包含10项31029283726524321xxyyxxyxyxyx用面积坐标法求插值函数。面积坐标的性质1321LLL3131iiiiiiyLyxLx1 三结点板单元的
12、位移模式面积坐标的一、二、三次式分别为321213232221123322221333231133221232221321, ,LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL(a)表示刚体位移;(b)在1-3边,位移及转角皆为零;在结点2,转角不为零;(c)在结点处位移及转角皆为零;但可与其他三次式共同使用,使单元更普适;(d)面积坐标的4次方。取三角形板的位移插值函数为)()()()()()(321213932123283212217321123632132253212214332211LLCLLLLLCLLLLLCLLLLLCLLLLLCLLLLLCLLLLLLw这个函数不是
13、 x,y 的完全 3 次多项式 ,一般情况下不能保证 w 满足常应变要求(当结点参数赋以和常曲率或常扭率相对应的数值时,w 不能保证给出和此变形状态对应的挠度值)。但当调整系数C取为0.5时,w 可满足常应变要求。)2/()2/()2/()2/()2/()2/(321213932123283212217321123632132253212214332211LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLw按前述方法求出 ,位移函数表为T321321dddNNNN ewi1111yxNNNN)1,2,3( ,)2/()2/()2/()2/(32122133212132321221332121322312213212211111LLLLLcLLLLLcLLLLLbLLLLLbLLLLLLLLLNNNyx2 三角形板单元的收敛性单元的完备性前已说明。对于协调性,同矩形板单元。非协调元尽管给出收敛解答,但这种收敛不一定是单调的;收敛性是以分片检验为条件的,应用范围受到限
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 太阳能热电联产项目可行性研究的目的和意义
- 2025年河南工业贸易职业学院单招职业技能测试题库附答案
- 输电线路迁改的技术要求
- 2024销售人员个人工作总结和计划(32篇)
- 第二章第二节海陆的变迁教学设计第 2课时 2023-2024学年人教版地理七年级上册
- 2025年湖南省郴州市单招职业倾向性测试题库学生专用
- 2025至2030年中国广告灯箱布基布数据监测研究报告
- 茶楼员工2025年度劳动合同与劳动合同续签条件
- 2025年度智能物流货运合同格式规范
- 二零二五年度商业设施定期清洁合同
- 电力公司备品备件管理制度
- 现金流量表编制案例
- 部编版二年级道德与法治下册《学习有方法》教案及教学反思
- 八年级英语阅读理解每日一练
- Q2起重机司机模拟考试100题(精选)
- 临时设备和临时用工计划表
- 准社会交往研究综述论文
- 中华老字号课件
- EPC工程总承包竣工验收管理方案
- 发动机正时类宝马m54图
- 全身体格检查总结及评分标准
评论
0/150
提交评论