方差分析统计学原理ppt课件_第1页
方差分析统计学原理ppt课件_第2页
方差分析统计学原理ppt课件_第3页
方差分析统计学原理ppt课件_第4页
方差分析统计学原理ppt课件_第5页
已阅读5页,还剩75页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、t检验法适用于两样本平均数的差异检验,检验法适用于两样本平均数的差异检验, 但但需进行多个平均数间的差异显著性检验。需进行多个平均数间的差异显著性检验。这时若仍采用这时若仍采用t检验法就不适宜。检验法就不适宜。处理这类问题通常采用方差分析方法。处理这类问题通常采用方差分析方法。 方差分析方差分析 (Analysis of variance简称简称ANOVA)用于推断多个总体均数有无差异用于推断多个总体均数有无差异例在饲料养鸡增肥的研究中,某饲料研究所提出例在饲料养鸡增肥的研究中,某饲料研究所提出三种饲料配方:三种饲料配方: A1是以鱼粉为主的饲料,是以鱼粉为主的饲料, A2是以槐树粉为主的饲料

2、,是以槐树粉为主的饲料, A3是以苜蓿粉为主的饲料。是以苜蓿粉为主的饲料。 为比较三种饲料的效果,特选为比较三种饲料的效果,特选 24 只相似只相似的雏鸡随机均分为三组,每组各喂一种饲料,的雏鸡随机均分为三组,每组各喂一种饲料,60天后观察它们的重量。试验结果如下表所示:天后观察它们的重量。试验结果如下表所示:鸡饲料试验数据鸡饲料试验数据 饲料A鸡鸡 重(克)重(克)A11073 1009 1060 1001 1002 1012 10091028A21107 10929901109 1090 1074 11221001A31093 1029 1080 1021 1022 1032 102910

3、48 本例中,我们要比较的是三种饲料对鸡的增肥作用是否相同。为此,我们把饲料称为因子,记为A,而三种不同的配方称为因子A的三个水平,记为A1, A2, A3,使用配方Ai下第 j 只鸡60天后的重量用yij表示,i=1, 2, 3, j=1, 2, 10。 我们的目的是比较三种饲料配方下鸡的平均重量是否相等,为此,需要做一些基本假定,把所研究的问题归结为一个统计问题,然后用方差分析的方法进行解决。 方差分析又叫变异数分析,方差分析又叫变异数分析,19281928年由英国年由英国统计学家统计学家Ronald FisherRonald Fisher首先提出来的,首先提出来的,所以方差分析又叫所以方

4、差分析又叫F F检验。检验。第一节第一节 方差分析简介方差分析简介单因素方差分析即完全随机设计资料的方差分析)、两因素方差分析即随机区组设计资料的方差分析和三因素方差分析即拉丁方设计资料的方差分析及多个样本均数间的多重比较。方差分析主要内容方差分析主要内容 方差分析的基本思想借助以下例题予以方差分析的基本思想借助以下例题予以说明:说明: 例:例: 为研究煤矿粉尘作业环境对尘为研究煤矿粉尘作业环境对尘肺的影响,将肺的影响,将1818只大鼠随机分到甲、乙、只大鼠随机分到甲、乙、丙丙3 3个组,每组个组,每组6 6只,分别在地面办公楼、只,分别在地面办公楼、煤炭仓库和矿井下染尘,煤炭仓库和矿井下染尘

5、,1212周后测量大周后测量大鼠全肺湿重鼠全肺湿重g g),数据见表),数据见表9292,问不,问不同环境下大鼠全肺湿重有无差别?同环境下大鼠全肺湿重有无差别? 一、方差分析的基本思想一、方差分析的基本思想甲组甲组 乙组乙组 丙组丙组4.24.55.63.34.43.63.73.54.54.34.25.14.14.64.93.34.24.7 ni 6 66 从以上资料可看出,三个组的数据各不相同,这种差异总变异可以分解成两部分: 即 (1组间变异:甲、乙、丙三个组大鼠全肺湿重 各不相等此变异反映了处理因素的作用,以及随机误差的作用 ) (2组内变异:各组内部大鼠的全肺湿重各不相等此变异主要反映

6、的是随机误差的作用) 各部分变异的计算: 总变异全部试验数据间大小不等用总离均差平方和 来表示。 CXCXXXSSginjijginjijii2112112)(总其中 NXNXCginjiji2211)(/)( 总SS 组间变异由于所接受的处理因素不同而致各组间大小不等用组间离均差平方和 来表示。 各组均数 之间相差越大,它们与总均数 的差值就越大, 越大;反之, 越小。组间SSCnTXXnSSgiiigiii1212)(组间iXX组间SS组间SS组内变异同一处理组内部试验数据大小组内变异同一处理组内部试验数据大小不等用组内离均差平方和不等用组内离均差平方和 来表示。来表示。组内SSginji

7、ijiXXSS112)(组内 三个变异之间的关系:三个变异之间的关系: 组内组间总SSSSSS组内组间总vvv其中: 1 Nv总 1 gv组间 gNv组内 离均差平方和只能反映变异的绝对大小。变异程度除与离均差平方和的大小有关外,还与其自由度有关,由于各部分自由度不相等,因此各部分离均差平方和不能直接比较,须除以相应的自由度,该比值称均方差,简称均方MS)。 的大小就反映了各部分变异的平均大小。组间组间组间vSSMS/组内组内组内vSSMS/MS 方差分析就是通过比较组内均方 和组间均方 的大小关系来判断处理因素有无效应。 检验统计量: 组内MS组内MS组间MS组内组间MSMSF 组间vv 1

8、组内vv 2如果各组的总体均数相等,即无处理因素的作用,则组内变异和组间变异都只反映随机误差的大小,此时组间均方 和组内均方 大小相当,即 F 值则接近1,各组均数间的差异没有统计学意义;反之,如果处理有作用,则组间变异不仅包含随机误差,还有处理因素引起的变异 ( 组间变异主要反映处理因素的作用 ),此时组间均方 远大于组内均方 ,则F值远大于1,各组均数间的差异有统计学意义。故依据 F 值的大小可判断各组之间有无差别。组间MS组间MS组内MS组间MS组内MS 可见,方差分析的基本思想就是 根据实验设计的类型,将全部测量值总的变异分解成两个或多个部分,每个部分的变异可由某个因素的作用或某几个因

9、素的作用加以解释,通过比较各部分的均方与随机误差项均方的大小,借助 F 分布来推断各研究因素对实验结果有无影响。方差分析的应用条件方差分析的应用条件 (1各观测值相互独立,并且服从正态分布; (2各组总体方差相等,即方差齐性。1 1 用于两个或多个均数间的比较用于两个或多个均数间的比较2 2 分析两个或多个因素的交互作用分析两个或多个因素的交互作用3 3 回归方程的假设检验回归方程的假设检验4 4 方差齐性检验方差齐性检验方差分析的用途方差分析的用途第二节第二节 单因素方差分析单因素方差分析完全随机设计资料的方差分析完全随机设计资料的方差分析一、完全随机设计一、完全随机设计 完全随机设计是采用

10、完全随机化的分组方法,完全随机设计是采用完全随机化的分组方法,将全部试验对象分配到将全部试验对象分配到g g个处理组,各处理组分别个处理组,各处理组分别接受不同的处理,试验结束后比较各组均数之间差接受不同的处理,试验结束后比较各组均数之间差别有无统计学意义,以推断处理因素的效应。别有无统计学意义,以推断处理因素的效应。将衡量试验结果的标志称为试验指标。将衡量试验结果的标志称为试验指标。 将影响试验结果的条件称为因素。将影响试验结果的条件称为因素。 因素在试验中所处的不同状态称为该因因素在试验中所处的不同状态称为该因素的水平。素的水平。 只考察一个影响条件即因素的试验称为只考察一个影响条件即因素

11、的试验称为单因素试验,相应的方差分析称为单因素单因素试验,相应的方差分析称为单因素方差分析。方差分析。方差分析的基本概念方差分析的基本概念二、变异分解二、变异分解 完全随机设计资料的方差分析表变异来源 自由度 SS MS F 总变异 组间 组内 1N1ggN CX 2CnTgiii12组间总SSSS组间组间vSS/组内组内vSS/组内组间MSMSF 单因素方差分析表单因素方差分析表 方差来源方差来源离差平方和离差平方和自由度自由度均方均方F值值 临界值临界值 F因素因素A(组间)(组间)SSAk-1SSA/(k-1)F(k-1,n-k)误差误差E(组内)(组内)SSEn-kSSE/(n-k)总

12、变量总变量SST=SSA+SSEn-1AESS /(k-1)SS /(n-k)F 例例1 1试根据表试根据表2 2试验结果,检验三组大鼠全肺湿重的总体试验结果,检验三组大鼠全肺湿重的总体均数是否相同。均数是否相同。 解:解: ( () ) 建立假设建立假设, ,并确定检验水准。并确定检验水准。 H0H0: H1H1: 不等或不全相等不等或不全相等 三、分析步骤三、分析步骤321321,05. 0() 计算F 值表表2 三组大鼠的全肺湿重三组大鼠的全肺湿重g) 本例 , , 以上计算结果代入方差分析表,并求出相应的MS 及F 值:8272.326187 .762C5628. 68272.3263

13、9.333总SS5278. 28272.32664 .2864 .2569 .22222组间SS0350. 45278. 25628. 6组间总组内SSSSSS表9- 3 例 9-1的方差分析表变异来源 SSv MS F 值 P 值组 间2.528 21.2644.70 F0.052,15),故P0.05,按 =0.05水准拒绝H0,接受H1,差别有统计学意义,可认为不同粉尘环境影响大鼠的全肺湿重。当g =2时,方差分析的结果与两样本均数比较的 t 检验等价,且有 。 2tF单因子方差分析的统计模型单因子方差分析的统计模型 只考察了一个因子,称其为单因子试验。 通常,在单因子试验中,记因子为

14、A, 设其有r个水平,记为A1, A2, Ar。 在每一水平下考察的指标可以看成一个总体 ,因为现共有 r 个水平,故有 r 个总体,1、每一总体均为正态总体,记为、每一总体均为正态总体,记为 N(i , i 2), i1, 2, r ;2、各总体的方差相同、各总体的方差相同: 1 2= 22= r2 = 2 ;(即,具有方差齐次性即,具有方差齐次性)3、从每一总体中抽取的样本是相互独立的,、从每一总体中抽取的样本是相互独立的, 即所有的试验结果即所有的试验结果 yij 都相互独立。都相互独立。 假定:假定: 我们要比较各水平下的均值是否相同, 即要对如下的一个假设进行检验: H0 :1 =2

15、 =r H1 :1, 2, , r 不全相等如果检验结果为H0成立,因子A的r个水平均值相同,称因子A的r个水平间没有显著差异,简称因子A不显著反之,当H0不成立时,因子A的r个水平均值不全相同,称因子A的不同水平间有显著差异,简称因子A显著。 单因子方差分析的统计模型: 2,1, 2,.,1, 2,., ,(0,)诸相 互,独且立都 服 从iiijiijjjmiyrN12,1,2,.,1,2,., ,0N(0,)相互独立,且都服从iriijiiijijiam iayrmj模型可以改写为模型可以改写为H0 :a1 =a2 =ar =0第三节第三节 两因素方差分析两因素方差分析 随机区组设计资料

16、的方差分析随机区组设计资料的方差分析 一、 随机区组设计 随机区组设计( randomized block design ),又称配伍组设计,是配对设计的扩展。 具体做法是:先按影响试验结果的非处理因素将受试对象配成区组block),再将各区组内的受试对象随机分配到不同的处理组,各处理组分别接受不同的处理,试验结束后比较各组均数之间差别有无统计学意义,以推断处理因素的效应。 该设计的特点:(1该设计包含两个因素,一个是区组因素,一个是处理因素;(2各区组及处理组的受试对象数相等,各处理组的受试对象生物学特性较均衡,可减少试验误差,提高假设检验的效率。 此类资料的方差分析,其应用条件同前:即资料

17、满足正态性及方差齐性的要求。 因为随机区组设计可以将区组间变异从完全随机设计的组内变异中分离出来以反映不同区组对结果的影响,所以随机区组设计全部测量值总的变异相应地就分成三部分。 各种变异之间的关系是: 其中: 误差区组处理总SSSSSSSS误差区组处理总vvvv1 Nv总1 gv处理1 nv区组) 1)(1(gnv误差二、二、 变异分解变异分解(1 1总变异:反映全部试验数据间大小不等的状况,总变异:反映全部试验数据间大小不等的状况,(2 2处理组间变异:甲、处理组间变异:甲、 乙、乙、 丙三个组间测量值的均数大丙三个组间测量值的均数大小不等,小不等,(3 3区组间变异:区组间变异:1212

18、个区组间测量值的均数大小不等,个区组间测量值的均数大小不等,(4 4误差变异:反映随机误差产生的变异,误差变异:反映随机误差产生的变异,CXSS2总CnTSSi2处理CgBSSj2区组区组处理总误差SSSSSSSS表表9-5 随机区组设计的方差分析表随机区组设计的方差分析表 变异来源 自由度 SS MS F 总变异 处理间 区组间 误差 CXSS2总1N1g1n) 1)(1(gn区组处理总SSSSSS处理处理vSS/区组区组vSS/误差误差vSS/误差处理MSMSF 误差区组MSMSF CnTSSi2处理CgBSSj2区组二、分析步骤二、分析步骤 结合例结合例9-2: 例9-2 研究甲、乙、丙

19、三种营养素对小白鼠体重增加的影响,已知窝别为影响因素。拟用6窝小白鼠,每窝3只,随机地安排喂养甲、乙、丙三种营养素之一种,8周后观察小白鼠体重增加情况,数据见表9-6。问:(1不同营养素之间小白鼠的体重增加是否不同?(2不同窝别之间小白鼠的体重增加是否不同? 表9-6 三种营养素喂养小白鼠所增体重g) 窝别号 甲营养素 乙营养素 丙营养素164657325354593716879441463855058656424046(1建立假设、确定检验水准。 处置:H0:甲=乙=丙三种营养素对小白鼠体重增加作用相同)H1:甲,乙,丙不全相等三种营养素对小白鼠体重增加作用不全相同) 区组:H0:1=2=6

20、窝别对小白鼠体重增加无影响)H1:1,2,6不全相等窝别对小白鼠体重增加有影响) (2计算检验统计量F 值。 计算各处理组的小计,各区组的小计,见表9-6。05. 0表9-6 三种营养素喂养小白鼠所增体重g) 2iXiX窝别号 甲营养素 乙营养素 丙营养素区组合计(Bj)1646573 2022535459 1663716879 2184414638 1255505865 1736424046 128处理组合计(Ti)321331360 10121789118845228365957253.555.260.056.22本例,11.267589.56896595722CXSS总22()10125

21、6896.8918XCN222232133136056896.89 136.77786iTSSCn组间2222222(20216621812517312856896.89 2377.1113jBSSCg区组= =2675.111 136.7782377.111=161.222SSSSSSSS处理总误差区组表表9-2 例例 9-2方差分析表方差分析表变异来源变异来源 SS V MS FP处理组间处理组间136.778 268.3894.240.05区组间区组间2377.1115475.42229.49 F 0.01F F 0.015, 105, 10),故),故 P P0.050.05。 结论:

22、按结论:按=0.05=0.05水准,拒绝水准,拒绝H0H0,接受,接受H1H1,差别有统计学意义,可认为不同窝别对小白鼠体差别有统计学意义,可认为不同窝别对小白鼠体重增加有影响。重增加有影响。 33. 3)10, 5(05. 0F10.4)10,2(05.0F)10,2(05. 024. 4FF64. 5)10, 5(01. 0F(查F 界值表,确定 P 值并作结论。 随机区组设计的优点是,从组内变异中分离出区组变异从而减少了误差均方,使处理组间的 F 值更容易出现显著性,即提高了统计检验效率。 当 g = 2 时,随机区组设计方差分析与配对设计资料的 t 检验等价,有t2 = F。 第四节第

23、四节 三因素方差分析三因素方差分析拉丁方设计资料的方差分析拉丁方设计资料的方差分析 一、一、 拉丁方设计拉丁方设计完全随机设计只涉及到一个处理因素;随机区组设完全随机设计只涉及到一个处理因素;随机区组设计涉及一个处理因素和一个区组因素。若实验涉计涉及一个处理因素和一个区组因素。若实验涉及一个处理因素和两个控制因素,而且每个因素及一个处理因素和两个控制因素,而且每个因素的水平数相等,此时可采用拉丁方设计来安排实的水平数相等,此时可采用拉丁方设计来安排实验,将两个控制因素分别安排在拉丁方的行和列验,将两个控制因素分别安排在拉丁方的行和列上。上。 拉丁方是由 g 个拉丁字母排成的 gg方阵,每行或每

24、列中每个字母都只出现一次,这样的方阵称为 g 阶拉丁方。 拉丁方设计是在随机区组设计的基础上发展的,它可多安排一个已知的对实验结果有影响的非处理因素,提高了效率。应用时,根据水平数 g 来选定拉丁方大小。334455A B CC A BB C AA B C DD A B CC D A BB C D AA B C D EEA B C DD EA B CC D EA BB C D EA 例9-3 研究A、B、C、D四种食品,以及甲、乙、丙、丁四种加工方法对小白鼠增体重的影响。拟用4窝大鼠,每窝4只,每只小白鼠随机喂养一种食品、随机采用一种加工方法;8周后观察大鼠增体重情况。实验结果如表9-9所示。

25、问:(1食品种类是否影响大鼠体重增加?(2食品加工方法是否影响大鼠增体重?(3不同窝别的大鼠体重增加是否不同? 区组号甲乙丙丁180 (D)70 (B)51 (C)48(A)247 (A)75 (C)78 (D)45(B)348 (B)80 (D)47 (A)52(C)446 (C)81 (A)49 (B)77(D)表9-9 四种食品及四种加工方法喂养大鼠所增体重g) 44A B C DD A B CC D A BB C D A二、变异分解二、变异分解表9-8 拉丁方设计资料的方差分析表 表中C 为校正数, 、 、 分别为不同处理、行区组、列区组的合计。 kkTXjjRXiiCX三、分析步骤三

26、、分析步骤 例例9-3 问:(问:(1食品种类是否影响大鼠体重增加?食品种类是否影响大鼠体重增加?(2食品加工方法是否影响大鼠增体重?(食品加工方法是否影响大鼠增体重?(3不同窝别的大鼠体重增加是否不同?不同窝别的大鼠体重增加是否不同? 表9-9 四种食品及四种加工方法喂养大鼠所增体重g) 解:(1) 建立检验假设,确定检验水准H处理0:A=B=C=D 即四种食品对大鼠体重增加相同H处理1:A,B,C,D不全相等 即四种食品对大鼠体重增加不全相同H行0:1=2=3=4 即不同窝别大鼠体重增加相同 H行1:1,2,3,4不全相等 即不同窝别大鼠体重增加不全相同H列0:甲=乙=丙=丁 即不同加工方

27、法对大鼠体重增加相同 H列1:甲,乙,丙,丁不全相等 即不同加工方法对大鼠体重增加不全相同 = 0.05 (2计算检验统计量计算检验统计量 =62772-59292.25=3479.75 (2232212222423152)-59292.25 = 1726.25 (2492245222722532)-59292.25 = 98.75 (2212306222522222)-59292.25 = 1304.25 =3479.75-1726.25-98.75-1304.25350.5 22()97459292.2516XCn2SSXC总=2114kSSTCg 处理2114jSSRCg行2114iSS

28、CCg列SSSSSSSSSS处理行列误差总表表9-10 例例 9-3方差分析表方差分析表变异来源变异来源 SS V MS FP处理间处理间1726.25 3575.4179.85 0.05列区组列区组1304.253434.7507.44 0.05误差误差350.50658.417总总3479.7515(3) 确定确定P值,作出推断结论值,作出推断结论对处理:以对处理:以处置处置=3和和误差误差=6查查F界值表,界值表,F0.053,6)=4.76,F0.013,6)=9.78,得,得P0.05,按,按=0.05水准不拒绝水准不拒绝H0,差别无统计学意义,尚不,差别无统计学意义,尚不能认为不同

29、窝别可影响大鼠增重。能认为不同窝别可影响大鼠增重。对列区组:以对列区组:以列列=3和和误差误差=6查查F界值表,界值表,F0.053,6)=4.76,F0.013,6)=9.78,得,得P0.05,按,按=0.05水准拒绝水准拒绝H0,接受,接受H1,差别有统计学意义,差别有统计学意义,可认为食品加工方法会影响大鼠增重。可认为食品加工方法会影响大鼠增重。 拉丁方设计的要求:拉丁方设计的要求: 一定是三因素,且三因素一定是三因素,且三因素水平数相等;水平数相等; 行间、列间、处理间均无交互作行间、列间、处理间均无交互作用;用; 各行、列、处理的方差齐。各行、列、处理的方差齐。 拉丁方设计的优缺点

30、:拉丁方设计的优缺点: 优点是可同时研究三个因优点是可同时研究三个因素,减少实验次数。从组内变异中不但分离出行区素,减少实验次数。从组内变异中不但分离出行区组变异,而且还分离出列区组变异,使误差变异进组变异,而且还分离出列区组变异,使误差变异进一步减小。缺点是要求处理组数与所要控制的两个一步减小。缺点是要求处理组数与所要控制的两个因素水平数相等,一般实验不容易满足此条件,而因素水平数相等,一般实验不容易满足此条件,而且数据缺失会增加统计分析的难度。且数据缺失会增加统计分析的难度。 第五节第五节 多个均数间的两两比较多个均数间的两两比较 经过方差分析,若拒绝了检验假设H0,只能说明多个总体均数不

31、等或不全相等。若要得到各组均数间更详细的信息,应在方差分析的基础上进行多个样本均数的两两比较。SNK-q检验、LSD-t 检验和Dunnett-t 检验。多重比较常用的方法有:一、一、SNK-q检验检验 SNKStudent-Newman-Keuls检验,亦称 q 检验,适用于多个均数两两之间的全面比较。检验统计量 q 的计算公式为: 误差vv 112ABABABXXABMSXXXXqSnn误差例1经 F检验结论有统计学意义,试用SNK-q检验方法对三组均数进行多重比较。 解: (1) 建立假设,确定检验水准。 H0 : (对比组总体均数相等); H1 : (对比组总体均数不等); 05. 0

32、BABA(2计算检验统计量 q 值。 计算差值的标准误:本例 nAnB6,MS误差MS组内0.269 将三个样本均数从小到大排序,并赋予秩次: 均数 3.817 4.233 4.733 组别 甲组 乙组 丙组 秩次R) 1 2 3 列表计算检验统计量q 值:0.269 1 10.211726 6ABXXS表9-12 例91的3个样本均数两两比较的q检验 (3) 确定 P 值,作出推断结论 以误差15及组数 a 查 q 界值表,并确定 P 值,填入表9-12。 结论:甲组与丙组(“1与3”)比较P0.05,按=0.05水准不拒绝H0。因此,可认为矿井下环境会造成肺功能损害。 二、二、Dunnet

33、t -t 检验检验 Dunnett t 检验适用于多个实验组与一个对照组均数差别的多重比较。检验统计量为: 误差vv TCTCTCDTC11XXXXXXtSMSnn误差 例2中甲组是对照组,研究目的是比较乙营养素和丙营养素是否比甲营养素多增加体重,经F检验结论有统计学意义,试用Dunnett-t检验方法对三组均数进行多重比较。 解: (1建立假设,确定检验水准。 H0: (所比较实验组与对照组总体均数相等) H1: (所比较实验组与对照组总体均数不等) (2计算检验统计量Dunnett-t值。 本例 n T = n C = 6 ,MS误差16.122,则差值的标准误为 2.318 05. 0C

34、TCTTCTC111116.12266XXSMSnn误差 列表计算 tD 统计量,如表9-13所示。 (3确定 P 值,作出推断结论 。 以 及处理数T=2查Dunnett-t 检验界值表,并确定P值,填入表9-13。丙组与甲组比较P0.05,没有统计学意义,按=0.05水准不拒绝H0,尚不能认为乙营养素与对照组增加体重不同。10误差 表9-13 例92的2个处理组与对照组均数比较的tD检验 三、三、 LSD- t 检验检验 LSD- t 检验即最小显著差异 t 检验,适用于一对或几对在专业上有特殊意义的样本均数间的比较。 检验统计量 t 的计算公式为:误差vv ABABABAB11XXXXX

35、XtSMSnn误差LSD- 例3中食品种类是否影响大鼠增体重,研究目的只为比较A食品与B食品,C食品与D食品便可;多组间经F检验结论有统计学意义,试用LSD-t检验方法对这两对均数进行多重比较。检验步骤为: (1建立检验假设,确定检验水准 H0:A = B 即所研究的两个对比组的总体均数相等 H1:A B 即所研究的两个对比组的总体均数不等 = 0.05 ( 2 ) 计算检验统计量 本例 nAnB4,MS误差58.417,误差61 158.4175.4044 4ABXXS 计算统计量计算统计量LSD-t值,如表值,如表9-14所示。所示。 (3确定确定P值,作出推断结论值,作出推断结论 以以误

36、差误差6查查 t 界值表,并确定界值表,并确定P值,填入表值,填入表9-14。由。由表表9-14得得A食品与食品与B食品比较食品比较P0.05,按,按=0.05水准,不拒水准,不拒绝绝H0,无统计学意义,还不能认为,无统计学意义,还不能认为A食品和工食品增体重不食品和工食品增体重不同。但同。但C食品与食品与D食品比较食品比较P0.01,按,按=0.05水准,拒绝水准,拒绝H0,有统计学意义,可认为,有统计学意义,可认为C食品增体重不如食品增体重不如D食品。食品。 表9-14 例93的两个对子均数比较的LSD-t检验 第五节第五节 多组样本的方差齐性检验多组样本的方差齐性检验 方差分析的一个应用

37、条件是相互比较的各样本的总体方差相等,即具有方差齐性,这就需要在作方差分析之前,先对资料的方差齐性进行检验,特别是在样本方差相差悬殊时,应注意这个问题。本节介绍多个样本的方差齐性检验方法,Bartlett检验法和Levene检验法。 一、一、Bartlett 检验检验 检验统计量为:检验统计量为: 1 gv22222111(1)ln(1) ln(1)lngggciiciiiiiiSnnSnSS2211(1)(1)giiicgiinSSn例7 对例1资料,检验其是否满足方差齐性?解: H0: H1: 不全相等 = 0.10表15 例1的方差齐性检验计算表222123222123, 首先计算各样本方差 Si2 和合并方差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论