版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2009 2010学年第一学期期末考试线性代数试卷答卷说明:1、本试卷共6页,五个大题,满分 100分,120分钟完卷。得分、单项选择题。(每小题3分,共24分)2、闭卷考试。题号一二三四五总分分数评阅人:总分人:1.行列式(A) 0(B)(C)(D)】2.设A为3阶方阵,2,A3,则 A(A) 24(B)24 (C)6(D)】3.已知A, B,为n阶方阵,则下列式子一定正确的是(A) AB BA (B)(A_ 22_B) A 2ABB2(C) ABBA(D)(AB)(AB) A2B2】4.设A为3阶方阵,0,则(A)(B)(C)(D)【】5.设矩阵A与B等价,则有(A) R(A) R(B)(
2、B)R(A) R(B)(C) R(A) R(B) (D)不能确定 R(A)和R(B)的大小【】6.设n元齐次线性方程组 Ax 0的系数矩阵 A的秩为r ,则Ax 0有非零解 的充分必要条件是(A) r n (B) r n (C) r n (D) r n【】7.向量组ai,a2, ,am(m 2)线性相关的充分必要条件是(A) ai,a2, am中至少有一个零向量(B) ai,a2, am中至少有两个向量成比例(C) ai,a2, am中每个向量都能由其余 m 1个向量线性表示(D) ai,a2, am中至少有一个向量可由其余m 1个向量线性表示【】8. n阶方阵A与对角阵相似的充分必要条件是(
3、A) R(A) n(B)A有n个互不相同的特征值(C) A有n个线性无关的特征向量(D)A一定是对称阵得分二、填空题。(每小题3分,共15分)1.已知3阶行列式D的第2行元素分别为1,2,1 ,它们的余子式分别为1, 1,2 ,则D 。八r 0 1462.设矩阵方程X,则X。1 0213 .设x是非齐次线性方程组 Ax b的一个特解,1, 2为对应齐次线性方程组Ax 0的基础解系,则非齐次线性方程组 Ax b的通解为.4 .设m n矩B$ A的秩R(A) r ,则n元齐次线性方程组 Ax 0的解集S的最大无关组So的秩Rs0 。25 .设是万阵A的特征值,则 是A的特征值三、计算题(每小题8分
4、,共40分).53121021 .计算行列式12121 01341022.已知矩阵A2113 ,求其逆矩阵A 1。4183. 设四元非齐次线性方程组的系数矩阵的秩为3 ,已知 1 , 2, 3 是它的三个解向量且2132,23 ,求该方程组的通解。4354214 . 求矩阵 A 的特征值和特征向量。122_225 .用配万法化一次型 f x1 2x2 5x3 2x1x2 2x1x3 6x2x3成标准型。得分四、综合体(每小题8分,共16分)1 .解下列非齐次线性方程组2x1 x2 x3 x414x1 2x2 2x3 x422x1 x2 x3 x412.已知向量组16求(1)向量组的秩;(2)向
5、量组的一个最大无关组,并把不属于最大无关组的向量用该最大无关组线性表示。B五、证明题(5分)证明:设n阶方阵A满足A2 A 2E 0,证明A及A 2E都可逆,并1求A及(A 2E)一、单项选择题。(每小题3分,共24分1 A 2 B 3 C 4 B 5 C 6 C 7 D 8 C二、填空题。(每小题3分,共15分)(C1,C2R)4.n r 5.2 11.4 2.3. x G 1c2 246三、计算题(每小题8分,共40分).1.解:11(2分)=02 .已知矩阵解:(A,E)10求其逆矩阵11113 .设四元非齐次线性方程组的系数矩阵的秩为11204011202分)3,已知(2分)(2分)(
6、2分)(4分)(2分)3是它的三个解向量且23,求该方程组的通解。32x14.:由已知可得:对应的齐次线性方程组Ax 0的解集S的秩为4 3 1,因此齐次线性方程组 Ax 0的任意非零解即为它的一个基础解系。 (3分)令 2 1 ( 23)则 A A2 1 ( 23H 2A 1A 2 A 32bb b 0所以 (3,4,5,6)T 0为齐次线性方程组 Ax 0的一个基础解系。 (3分)由此可得非齐次线性方程组 Ax b的通解为:43x k k(k R)54(2分),2求矩阵A11的特征值和特征向量。2A的特征多项式为:(1)(3)所以A的特征值为11, 2 3。(4分)(1)当11时,对应的特
7、征向量满足1 1 x11 1 x2,解得:x1x20则11对应的特征向量可取p1(2分)(2)当13时,对应的特征向量满足xix211x111 x21(2分)则13对应的特征向量可取P2112_225.用配万法化一次型 f x1 2x2 5x3 2x1x2 2x1x3 6x2x3成标准型。解: f2x1x22x1x32x225x326x2x3(x1x2x3)222x2 4x3 4x2x322(Xi X2 X3)(X2 2x3)4 分)y1X1X2 X322令 y X2 2X3则把f化成标准型得:f y y (4分)y3 X3四综合题(每小题8 分, 共 16分)1. 解下列非齐次线性方程组2X
8、1 X2 X3 X4 14X1 2X2 2X3 X4 22X1 X2 X3 X4 1解:对增广矩阵B 作初等行变换21421121101r120 001 05 分)2111100000由上式可写出原方程组的通解为:X1100X22113 分)c1c2(c1 ,c2 R)X3010X40002. 已知向量组123a12 , a23 , a33116求 (1) 向量组的秩; (2) 向量组的一个最大无关组, 并把不属于最大无关组的向量用该最大无关组线性表示。12解: A 2 33107r10 152 分)3 116000则 Ra2,2 分)故向量组的最大无关组有2 个向量,知a1 ,a2为向量组的一个最大无关组。2分)且 a37a1 5a2 (2 分)五、证明题(5分)证明:设n阶方阵A满足A2 A 2E 0,证明A及A 2E都可逆,并求 A1及(A 2E) 1。证明:.1,.(1) 由已知可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育机构的安全管理与监督策略
- 提高学习效率小学生数学学习习惯的培养方法
- 家庭健康饮食与运动结合的智慧
- 家庭装饰与文化传承传统元素在现代家居中的应用
- 全国浙教版信息技术高中必修1新授课 7.2 知识产权 说课稿
- Module 5 Unit 2(说课稿)-2023-2024学年外研版英语八年级下册
- Unit 5 Music Reading for Writing 说课稿 -2024-2025学年高中英语人教版(2019)必修第二册
- Unit 2 Making a Difference Developing ideas The power of good 说课稿-2023-2024学年高一英语外研版(2019)必修第三册
- 27 我的伯父鲁迅先生说课稿-2024-2025学年语文六年级上册统编版
- Unit 1 Cultural Heritage Discovering Useful Structures 说课稿-2024-2025学年高中英语人教版(2019)必修第二册
- 招标代理机构选取投标方案(技术标)
- 2023-2024学年深圳市高一年级下册英语期末考试题(含答案)
- 肾小球滤过屏障的分子机制
- 2023-2024学年浙江省杭州市高二上学期1月期末地理试题(解析版)
- 2024年湖北三江航天江河化工科技限公司招聘(高频重点提升专题训练)共500题附带答案详解
- 10日益重要的国际组织第三课时中国与国际组织(教学设计)2023-2024学年统编版道德与法治六年级下册
- Unit 1 同步练习人教版2024七年级英语上册
- 工程管理重大风险应对方案
- 腰椎间盘突出疑难病例讨论
- 《光伏发电工程工程量清单计价规范》
- 2023-2024学年度人教版四年级语文上册寒假作业
评论
0/150
提交评论