版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、直线与圆的位置关系的教学设计-.教材分析:直线与圆的位置关系”这一内容是九年级数学第 24章第2节的教学内容,它既是点与 圆的位置关系的延伸与拓展,又是圆与圆的位置关系的铺垫,同时也是高中学习解析几何和立体几何的必备知识,所以这节课具有举足轻重的地位。在直线与圆的位置关系中渗透了运 动变化的观点和数形结合的思想方法。直线动而圆不动,圆动而直线不动,这是运动,圆动且半径变大(小)是变化。距离 d与半径r的数量关系是数,而图形位置关系是形。常用到勾股定理、三角函数、相似、方程与函数的知识等。初中阶段可解决下列问题:(1 )由直线与圆的位置关系,求圆的半径或圆的半径的取值范围。(2)由r与d的大小关
2、系,判断直线与圆的位置关系。(3) 直线与圆的交点个数问题。(由图形观察)(4 )直线运动与圆形区域运动问题。如航海、台风、地震、声音传播等问题。1 教学内容、重点、难点:(1)内容:a、根据直线与圆的公共点的个数定义了直线和圆的三种位置关系,b、借助图形,直观得出根据圆心到直线的距离 d与圆的半径r的数量关系 来判定直线与圆的位置关系的定理。(2)重点:直线与圆的位置关系的判定方法 ;(3)难点:直线与圆的位置关系的研究与运用。突破难点的关键是借助多媒体的动态演示,帮助学生解释问题实质2目标分析:1知识目标:1、理解直线与圆的三种位置关系。2、掌握直线与圆的三种位置关系的性质和判定。2能力目
3、标:通过动手操作,探究思索,交流互动,向学生渗透分类、类比、数形结合等思想,同时培养学生的想象、观察、分析、概括能力。3、情感目标:本课通过学生熟悉的“日落”等情景,引导学生把自己的实际感受转化为数 学问题,增加对“数学来源于实践”的体验,引导学生进行规律的再发现, 培养学生的辨证思维能力,激发学习数学的兴趣,毕竟兴趣是最好的老师。4德育目标:创设问题的情景,让学生主动地发展。二. 教法分析:采用探究、讨论、讲练相结合法 进行教学,在教师的引导下,学生成为课堂上真正的主 人。这个环节采取合作探究的方式, 通过讨论以及思考,培养了学生的自学能力和合作意识, 增强了课堂上的信息交流量,使学生之间取
4、长补短,共同提高。小组讨论时,教师穿插于各个小组,了解情况,发现问题,可进行适当的点拨。三. 学法分析:动手实践、自主探索、合作交流是学习数学的重要方式。本节课通过观察、猜想、小组讨论、习题训练等形式帮助学生在探索交流的过程中,真正理解和掌握相关的数学知识和思想方法,使每一个学生都能得到发展。四. 过程分析:教师应该提供多样化的活动方式,让学生积极参与,并在这些丰富的活动中进行交流, 亲身体验做“数学”。因此我通过动画演示、两个实际动手操作题及反馈练习题,让学生经历观察、操作、描述、猜想、交流,使学生真正从事思维活动,并表达自己的理解,促进数学的学习。在本课教学中我采用动手操作、小组讨论,合作
5、学习的方式,构建探索性学习的 课堂教学结构,即“情景导入-研讨应用-交流评价”的基本教学模式。尽可能让学生在学习的过程中探索并掌握直线与圆的三种位置关系的性质定理和判定定理,理解合作共享, 培养学生的合作精神、探索能力,发展学生的思维。五、教学用具:多媒体、圆规、三角板、一把直尺、一枚硬币六、教学程序引入(3分钟)-探索新矢口( 30分钟)-反馈练习(10分钟)-小结与作业(2分钟)(一)创设情景,孕育新知,引入新课1、微机演示唐朝诗人王维使至塞上 :单车欲问边,属国过居延。征蓬出汉塞,归雁入胡天。大漠孤烟直,长河落日圆。萧关逢候骑,都护在燕然。第三句以出色的描写,道出了边塞之景的奇特壮丽和作
6、者的孤寂之感。“荒芜人烟的戈壁滩上只有烽火台的浓烟直冲天空”,如果我们从数学的角度看到的将是这样一幅几何图形: 一条直线垂直于一个平面。 那么“圆圆的落印慢慢地沉入黄河之中” 又是怎样的几何图形呢?(动画演示)。它给了我们直线和圆的位置关系的印象,那么平面上给定一个圆和一条运动 着的直线或给定一条定直线和一个运动着的圆,它们之间有着哪几种不同的位置关系,如果从数学角度看,它的若干种位置关系能分为几大类?(二)动手操作、合作发现:(1 )请同学们在练习本上画一个圆,把直尺边缘看成一条直线,固定圆,平移直尺,观察 直线和圆有几种位置关系?(2)在纸上画一条直线,把硬币的边缘看作圆,在纸上移动硬币,
7、观察直线和圆有几种位 置关系?通过刚才的研究,你能发现直线与圆的公共点个数的变化情况吗?公共点最少时有几个?最 多时有几个?你认为直线和圆的位置关系可分为几种类型?分类的标准各是什么?教师指 导学生从直线和圆的公共点的个数来研究直线和圆的位置关系,让学生尝试用用自己的语言叙述出直线和圆的三种位置关系,教师结合图形介绍“相交、相切、相离的定义”。1直线和圆有两个公共点时,叫做直线和圆相交;这条直线叫做圆的割线。2直线和圆有唯一公共点时,叫做直线和圆相切,这条直线叫做圆的切线,唯一的公共点叫 做切点;3直线和圆没有公共点时,叫做直线和圆相离。,你认同吗?为什么?思考:问题1: “直线和圆有公共点时
8、,叫做直线和圆相切”问题2:当射线或线段与圆有唯一公共点时,它们一定与圆相切吗?问题3:你能举些生活中与“直线和圆”有关的实例吗?(如:碗筷,自行车越野运动员在起伏不平的山地比赛。),(三)探索新知、引导归纳提出问题:有没有第二种方法来判断直线和圆的位置关系呢?接下来以小组为单位,合作 完成下面的问题。1复习旧知:(1)点和圆有几种位置关系?如何判断? ( 2)什么是点到直线的距离? ( 3) 连接直线外一点与直线上所有点的线段中,最短的是哪一条?2、合作探究:如果把图形“点与圆”中的“点”改为“直线”,你能否找到判断直线和圆的位置关系的第二种方法呢?请同学们思考一下,能否象判定点和圆的位置关
9、系,直线和圆的位置关系 呢?向学生展示圆心 0到直线I的距离为d,观察d与圆O O的半径r的大小在不同的位置 关系下有什么关系?3、归纳小结:进行小组汇报,相互补充,对回答精彩的小组给予表扬。重点关注:(1)讨论时是否人(3>相交d < r人参与。(2)汇报时,学生语言是否规范清晰。如果O O的半径为r,圆心O到直线I的距离为d,那么1)相离d >r结论(1)直线I和O 0相离 ? d>r(2)直线I和O 0相切? d=r(3)直线I和O O相交 ? d<r说明:符号“ ? ”读作“等价于”,表示从左端可以推出右端,且由右端也可推出左端。意义:由半径r与距离d的大
10、小关系可判断出直线与圆的位置关系;反之由直线与圆的位置关系可得到半径r与距离d的大小关系的性质。(左推右是性质,右推左是判定)(四)例题讲解:用一用:理论学习的根本目的便是学以致用,这一部分旨在提高学生运用概念的灵活性。例 1 :在Rt ABC中,/ C=90。,AC=3cm , BC=4cm,以C为圆心,r为半径的圆与直B线AB有怎样的位置关系?为什么?(1)r=2cm (2) r=2.4cm(3) r=3cm解析:欲判定O C与直线AB的关系,只需先求出圆心 C到直线AB 的距离CD的长,然后再与r比较即可。题目图:解:由等面积法易得圆心C到直线AB的距离d=2.4cm。(1 )当r=2c
11、m时,有d> r,因此O C与AB相离;(2)当r=2.4cm时,有d=r,因此O C与 AB相切;(3)当r=3cm时,有d<r,因此O C与AB相交。变式训练1、在上题中,“圆心为A,半径分别为2cm、4cm的两个 圆与直线BC有怎样的位置关系?半径 r多长时,直线BC与O A相 切?变式训练2、在上题中,若将直线 AB改为边AB,则圆半径r应取怎样的值时边 AB与O C(1)只有一个公共点? ( 2)有两个公共点?( 3)无公共点?例 2:已知:/ ABC=30。,边BC上有一点 O, BO=2 , O O的半径为多少时O O与AB相交、相切、相离?解析:如图,计算出点O到A
12、B的距离,即可进行判断。解:作0D丄AB于D , D为垂足在 Rt 0BD 中,/ B=30。,0B=2,则 0D=1 当r>1时,O 0与AB相交;当r=1时,O 0与AB相切;当r<1时,O 0与AB相离。本环节的设计:一方面让学生通过适量的练习复习巩固课堂知识,另一方面设计提高练 习,旨在培优,同时提高学生的创新思维以及类比能力。练一练:此部分为课堂练习部分,旨在加深理解,帮助学生自我检测本堂课的掌握程度。1、 O 0的半径为3,圆心0到直线I的距离为d,若直线I与O 0没有公共点,则d为():A . d > 3 B. d<3 C. d < 3 D. d =
13、32、 圆心0到直线的距离等于O 0的半径,则直线和O 0的位置关系是():A .相离 B.相交C.相切D.相切或相交3、 判断:若线段和圆没有公共点,该圆圆心到线段的距离大于半径()4、 判断:若直线和圆相切,则该直线和圆一定有一个公共点.()5、已知O 0的半径为6, P为直线I上一点,0P=6,那么直线I与圆0的位置关系是()A :相离 B :相切C:相交D:相切或相交6、 选择题:如下图,已知等边 ABC的边长为/ i cm,下列以A为圆心的各圆中,半径 是3cm的圆是()7、在等腰 ABC中,AB=AC=2cm ,若以A为圆心,1cm为半径的圆与 BC相切,则/ BAC 的度数为多少
14、?()A、30° B、60° C、90 ° D、120°(五)课堂总结:根据所学内容,填写下表:(多媒体演示答案,由学生完成)直线与圆的位置关系相交相切相离公共点个数210公共点名称交占八、切点直线名称割线切线图形”11.E HN F(-o "ijFdo )b>a1圆心到直线距离d与半 径r的关系dvrd=rd>r(六)作业布置:1课本P94习题1、2 (巩固定理,查漏补缺的作用)2弹性作业:预习切线的性质定理 (预备下节课学习)3、思考题:(1)直线y=kx(k丰0)经过(3, -4),将它向上平移 m(m>0 )个单位后得
15、到的直线与半径为6的O O相离,试求m的取值范围(2 )在某沿海一条防护林带的附近海面有一台风。据监测,当前台风中心位于防护林带的正东方向300千米的海面P处,并以20千米/小时的速度向正西方向移动。台风侵袭的范 围为圆形区域,当前半径为60千米并以10千米/小时的速度不断增大,问几小时后改防护 林带开始受到台风的侵袭?如图:m (林带)七、板书设计:直线与圆的位置关系定义:1直线和圆有两例题讲解:个公共点时,叫做直线例 1 :在 Rt ABC 中,/和圆相交;这条直线叫C=90。, AC=3cm ,做圆的割线。BC=4cm,以C为圆心,2直线和圆有唯一公共r为半径的圆与直线 AB点时,叫做直
16、线和圆相有怎样的位置关系?为切,这条直线叫做圆的什么?切线,唯一的公共点叫(1) r=2cm (2) r=2.4cm做切点;(3) r=3cm3直线和圆没有公共点例 2 :已知:/ ABC=30。,时,叫做直线和圆相边BC上有一点0, BO=2 ,离。O 0的半径为多少时O 0 与AB相交、相切、相离?磁JUS2iU瓷KA如阳斥A.0At.B 45.1d.-rdE总结:八、结束语数学使人聪明,数学使人陶醉,数学的美陶冶着你、我、他。希望同学们象一轮朝阳,蓬勃向上,生机盎然,热爱生活,学好数学九、教学评价与反思:本节课适当地应用了现代化的教育媒体,同时与传统的教学媒体相结合,生动合理地传递教育信息,使学生的知、情、意、行都保持了良好的状态,打破了原有的 黑板+粉笔”的教学模式,用生动、直观的方式,达到节时、高效的目的,从而实现了教学的最优化。这节课有这样几个亮点:第一,利用电教模媒体导入,本课引用唐朝诗人王维的千古绝唱“大漠孤烟直,长河落日圆”配以美伦美奂的景色,营造了探索问题的氛围,让学生感受到“生活处处不数学”,从而在生活中主动发觉问题加以解决,达到“乐学”的目的;把实际问题与数学知识紧密联系,逐步渗透数学建模的思想方法,让学生掌握到更多的技能技巧。第二,本节课的设计体现了“学会学习,为终身学习作准备”的理念,让学生在“
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考物理总复习专题九磁场第3讲带电粒子在匀强磁场、复合场中的运动练习含答案
- 生产车间承包设备租赁
- 高中化学 第三册 第九章 初识元素周期律 9.2 元素周期表教学设计1 沪科版
- 2024年四年级品德与社会上册 第三单元 生活在这里真好 第11课《我家来了新邻居》教案 粤教版
- 2024秋七年级英语上册 Unit 5 Family and Home Lesson 28 A Family Picnic教学设计 (新版)冀教版
- 2023一年级数学下册 五 认识人民币 1认识人民币教案 西师大版
- 2023九年级道德与法治下册 第一单元 我们共同的世界 第一课 同住地球村第2课时 复杂多变的关系说课稿 新人教版
- 文书模板-建设工程施工分包合同
- 外汇存款代办委托书
- 银行合同范本(2篇)
- 边坡工程支护设计计算书Word
- GLP-1受体激动剂与DPP-4抑制剂幻灯
- 证券投资学习题(霍文文)附答案
- 地铁综合监控施工组织设计
- 日用陶瓷项目企划书(模板参考)
- 专利入池协议
- 古诗接龙100首
- 会计专业剖析报告 - 副本
- 天津民众体检中心——教你看懂体检报告ppt课件
- 谈石灰土施工质量问题及处理措施_工程管理
- HJ 535-2009 水质 氨氮的测定 纳氏试剂分光光度法(代替GB 7479-87)
评论
0/150
提交评论