版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十章第十章 微分方程微分方程 第七节第七节 线性微分方程解的结构线性微分方程解的结构二阶线性微分方程二阶线性微分方程)()()(22xfyxQdxdyxPdxyd 时,时,当当0)( xf二阶线性齐次微分方程二阶线性齐次微分方程时,时,当当0)( xf二阶线性非齐次微分方程二阶线性非齐次微分方程n阶线性微分方程阶线性微分方程).()()()(1)1(1)(xfyxPyxPyxPynnnn 1.1.二阶齐次方程解的结构二阶齐次方程解的结构: :定理定理 1 1 如果函数如果函数)(1xy与与)(2xy是方程是方程(1)(1)的两个的两个解解, ,那末那末2211yCyCy 也是也是(1)(1)
2、的解的解. .(21, CC是常是常数)数)问题问题: :一定是通解吗?一定是通解吗?2211yCyCy )1(0)()( yxQyxPy定定义义:设设nyyy,21为为定定义义在在区区间间I内内的的n个个函函数数如如果果存存在在n个个不不全全为为零零的的常常数数,使使得得当当x在在该该区区间间内内有有恒恒等等式式成成立立 02211 nnykykyk,那那么么称称这这n个个函函数数在在区区间间I内内线线性性相相关关否否则则称称线线性性无无关关例如例如xx22sin,cos1,xxxeee2, ,线性无关线性无关线性相关线性相关时,时,当当),( x特别地特别地: 若若在在 I 上上有有常常数
3、数, )()(21xyxy则则函函数数)(1xy与与)(2xy在在 I 上上线线性性无无关关.定理定理 2 2:如果:如果)(1xy与与)(2xy是方程是方程(1)(1)的两个线的两个线性无关的特解性无关的特解, , 那么那么2211yCyCy 就是方程就是方程(1)(1)的通解的通解. .例如例如, 0 yy,sin,cos21xyxy ,tan12常数常数且且 xyy.sincos21xCxCy 2.2.二阶非齐次线性方程的解的结构二阶非齐次线性方程的解的结构: :定定理理 3 3 设设*y是是二二阶阶非非齐齐次次线线性性方方程程)2()()()(xfyxQyxPy 的的一一个个特特解解,
4、 , Y是是与与( (2 2) )对对应应的的齐齐次次方方程程( (1 1) )的的通通解解, , 那那么么*yYy 是是二二阶阶非非齐齐次次线线性性微微分分方方程程( (2 2) )的的通通解解. .证证: 将将)(*)(xyxYy代入方程左端, 得)*( yY)*(yYp)*(yqpyy )(YqYpY )(0)(xfxf)*(yYq)(*)(xyxYy故是非齐次方程的解是非齐次方程的解, 又又Y 中含有中含有两个独立任意常数两个独立任意常数, 因而因而 也是通解也是通解 .例如例如, 方程方程xyy 有特解xy *xCxCYsincos21对应齐次方程0 yy有通解因此该方程的通解为xx
5、CxCysincos21定理定理 4 4 设非齐次方程设非齐次方程(2)(2)的右端的右端)(xf是几个函是几个函数之和数之和, , 如如)()()()(21xfxfyxQyxPy 而而*1y与与*2y分别是方程分别是方程, , )()()(1xfyxQyxPy )()()(2xfyxQyxPy 的特解的特解, , 那么那么*2*1yy 就是原方程的特解就是原方程的特解. .解的叠加原理解的叠加原理定理定理5 5 (LiouvilleLiouville公式)公式)dxeyyydxxp )(21121的非零解,那么的非零解,那么是该方程与是该方程与y1(x)y1(x)线性无关的解线性无关的解0)
6、()( yxQyxPy若若y1(x)y1(x)是方程是方程 (1 1) 证证12)(yxuy 令令代入代入(1)式式, 得得, 0)()()(2(111111 uyxQyxPyuyxPyuy,uv 令令则有则有, 0)(2(111 vyxPyvy, 0)(2(111 uyxPyuy即即解得解得,1)(21 dxxPeyvdxeyudxxP )(211,1)(2112dxeyyydxxP 刘维尔公式刘维尔公式齐次方程通解为齐次方程通解为.1)(211211dxeyyCyCydxxP 0)(2(111 vyxPyvy降阶法降阶法的一阶方程的一阶方程 v.1111的通解的通解求方程求方程 xyxyxxy解解, 01111 xxx对应齐次方程一特解为对应齐次方程一特解为,1xey 由刘维尔公式由刘维尔公式 dxeeeydxxxxx1221,x 对应齐方通解为对应齐方通解为.21xeCxCY 例例四、小结主要内容主要内容线性方程解的结构;线性方程解的结构;线性相关与线性无关;线性相关与线性无关;降阶法与常数变易法;降阶法与常数变易法;补充内容补充内容可观察出可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024城市公交线路经营权转让合同
- 2024年度人工智能助手授权使用协议
- 2024年度分体式空调安装合同
- 2024年度品牌策划与推广服务合同
- 2024年技术秘密保护与保密协议
- 2024年抹灰工程施工合同样本
- 2024年度知识产权保护与许可合同具体条款
- 2024年度版权质押合同:文学作品著作权抵押融资
- DB4115T 038-2018 信阳养生菜烹饪技艺 豫南杀猪菜
- 押题01大气运动和天气系统-备战2023年高考地理之考前押大题(原卷版)
- 《春节的文化与习俗》课件
- 手机棋牌平台网络游戏商业计划书
- 学校体育与社区体育融合发展的研究
- 医疗机构高警示药品风险管理规范(2023版)
- 一年级体质健康数据
- 八年级物理(上)期中考试分析与教学反思
- 国家开放大学《财政与金融(农)》形考任务1-4参考答案
- 2023银行网点年度工作总结
- 工厂反骚扰虐待强迫歧视政策
- 计算机教室(微机室)学生上机使用记录
- FAI首件检验报告
评论
0/150
提交评论