一起学奥数--数字谜(四年级)(课堂PPT)_第1页
一起学奥数--数字谜(四年级)(课堂PPT)_第2页
一起学奥数--数字谜(四年级)(课堂PPT)_第3页
一起学奥数--数字谜(四年级)(课堂PPT)_第4页
一起学奥数--数字谜(四年级)(课堂PPT)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1数数 字字 谜谜风子编辑2教育目标教育目标灵活地运用运算法则和整数的性质学会发现问题、分析问题教育重点教育重点 掌握数字谜解题思路,及数字与数字之间的规律教育难点教育难点 综合运用数论的知识,来解决数字谜问题3第一课 横式数字谜4例1、下列算式中,、各代表什么数字? 1) + + =129 2) +25=125- 3)8 -17=47 4)36-150 =6【分析】用实物来表示数(如苹果、足球等),之前应该已学习过。用符号表示数,有的小朋友也应该碰到过了。下一步我们将会学习更加抽象的,用字母来表示数,这些都是学习方程的基础。我们可以把一个等式看作是天平,左边放着符号,右边放着表示重量的数字。

2、我们知道天平两边同事加减等量的东西,天平不会倾斜。所以,等号的两边加减或乘除相等的数,等号仍然能够成立。1)是三个的和,即3 ,所以等式两边都除3,就是1个三角形代表的数字,即1293=432)两边都加上一个圆,再两边都减去25,就变成了+=100,所以=503)两边都加上17,就变成了8 =64,再除以8,所以=84)两边都减去6,再两边加上150 ,则变成30=150 ,接着两边都乘以,则得到新的等式:30 =150,所以=5 引导学生对以上变化做小结,变化过程要让学生养成数字引导学生对以上变化做小结,变化过程要让学生养成数字放右边,符号放左边的习惯。放右边,符号放左边的习惯。5例2、如果

3、+=6,=+,那么, -=?【分析】条件中出现两个等式,并且出现多个符号时,我们要想办法把其中一个等式的符号统一成一个。就像用天平称东西,左边放了1个苹果,1个桔子,右边放了代表它们重量的6。我们又知道一个苹果和2个桔子一样重。而旁边又有两个桔子,这是我们可以用两个桔子换下一个苹果,称出3个桔子的重量等于6。所以,条件中的两个等式中,我们可以用两个“”替换掉+=6中的“”,得到+ + =6,则有:=2得到代表的数字,“”就可以通过第二个等式算出:=4 引导学生对以上变化做小结,让学生了解等式加减。引导学生对以上变化做小结,让学生了解等式加减。6例3、在下列方框中填上适当的数,使等式成立: 1)

4、 5=403 2)148 =84【分析】根据题目中给定等式的特点,我们可以利用带余数除法的特点来计算代表“”的数字。1)“”代表的是被除数,这个等式的意思为:一个数被5除,商为40,余数为3。根据带余数除法的特点,或者采用还原法, “”代表的数为:405+3=2032)“”代表的是除数,这个等式的意思为:148被一个数除,商为8,余数为4。根据带余数除法的特点,或者采用还原法, “”代表的数为: (148-4)8=18 回顾带余数除法的特点回顾带余数除法的特点7例4、将17这七个数字分别填入下面的空格内,使等式成立。(每个数字只能用一次) =+-【分析】学会化繁为简,是做这类题目的关键。根据一

5、个数可以拆分为几个约数的乘积的性质。我们可以发现,第一个等号可以变为 =即:我们应该从17这7个数中找出一个数,能够拆分为3个不同的数的乘积。可以发现,只有6符合要求,即6=123.所以第三个方框内填6。等式的值为2、3、6,右边三个方框内填4、5、7。4、5、7填入右边三个方框,可以组成为4+5-7=2,4+7-5=6,5+7-4=8,即前两个符合等式的值。所以,这7个数可以为:12=63=4+5-7或23=61=4+7-58例5、在下列等号左边的每两个数之间,添上加号或减号,也可以用括号,使算式成立。 1 2 3 4 5=1【分析】填符号的技巧在于缩小数字范围,或者说,对等号左边的数字进行

6、分组,使一组能够使等式成立,而另一组为0或1.我们可以先对15进行分组。使一组等于1,另一组等于0或1.由连续数字的性质可以知道,相邻两数差为1.则剩下三个数在组合成一组。找4、5为一组,-4+5=1,而1+2-3=0.再把两组数做连接。(1+2-3) - 4+5=1还可以有其它的分组方法,请动手试试还可以有其它的分组方法,请动手试试9例6、添上适当的运算符号+、-、( ),使得下面的算式成 立。 5 5 5 5 5=10【分析】填符号的技巧在于缩小数字范围,或者说,对等号左边的数字进行分组,使一组能够使等式成立,而另一组为0或1.我们可以先对5个5进行分组。因为两个5相加等于10;则使三个5

7、等于0或1。很容易得到: (5-5)5=0。接着,再把两组相连接即可。(5-5)5+5+5=1010第二课 竖式数字谜11例例1 1、下面的算式中,5个相同的两位数AB相加得两位数MB,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则AB=? A B A B A B A B + A B M B【分析】观察这个竖式,5个B相乘,个位仍旧是B,这样的数只有0和5。而如果A2,则乘积应该是三位数,且A0,所以A=1. 为保证乘积是二位数,还需要考虑个位相乘后进位的数。 测试B=0或B=5,都能保证乘积为两位数,所以AB为10或1512例2、在下面算式的内各填入一个合适的数字,使算式成立。

8、0 0 - 5 0 9 1 9 3【分析】竖式运算中,补上某些漏掉的数的关键,是找到突破点。这是一个减法,观察已知的各个位置,可以发现个位数字是突破点。非常确定的是,被减数的个位数必须是2 0 0 - 5 0 9 1 9 32被减数的十百位都是0,所以向千位借1,而千位减5等于1,则被减数千位数为77由差的十位是9,减少的百位为0,可以得出,减数的十位为0,差的百位为90913例3、下面是一个六位数乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是? 小 学 希 望 杯 赛 赛 9 9 9 9 9 9【分析】这是一个六位数与一位数的乘法,结果为999999。分

9、析左边竖式,突破口在两个相同的数相乘个位为9。在0-9这十个数中,符合条件的只有3和7。如果是3,则以上竖式等同于“小学希望杯赛1=333333”即所有汉字表示了相同的数。所以“赛=7”。因为“赛赛”产生进位4,所以“杯赛”个位要等于9,还差5,与7相乘个位为5的数只有5,所以“杯”=5。以此类推,“望”=8;“希”=2;“学”=4;“小”=1解乘法竖式数学谜的关键是找到突破口解乘法竖式数学谜的关键是找到突破口14例4、请在下面算式的里填上合适的数字,使算式成立: 4 6 1 0 5 8 【分析】一般突破口不是在头上,就是在尾部,中间部分受到后边数字的影响,存在干扰因素。观察这个题目,第一行的

10、个位数受到0和5的制约,即两个数相乘,个位必须是0或5,那么这两个乘数中必定有一个5.5接着可以确定第三行的十位数字为7.同时,产生进位2.而6的倍数10,且小于20的,只有12和18,但18+2为20,所以第一行的百位数是2。第三行的百位为4。724下一步的突破口应该是2?8,且?处为奇数,所以?=1或3。尝试可知,第二行的十位数字为3。3确定两个乘数后,其它的就很容易确定了。36028注意:有没有学生不理解第二行的乘数十位是奇数注意:有没有学生不理解第二行的乘数十位是奇数15例5、在下面竖式的里填入合适的数字,使竖式成立。 9 ) 4 1 5 5 3 7 0【分析】利用599559,可以确

11、定商十位为6。6因为与3相加个位为1的数只有8,所以可以确定第三行个位数为8。85586=93,所以可以确定除数的个位为33在41-551时,产生连续借位,且差最高位为0,所以被除数最高位为6,余数为83。68被除数的个位是非常清楚的,应该一眼就能够看出为77接着,只要做83793=9即可。987316 第三讲 提高篇17例1、如图,请在右图每个方框中填入一个不是8的数字,使乘法竖式成立。则最后的乘积是多少? 8 8 8 8 8 【分析】乘法竖式谜的突破口往往在头和尾的计算。而这个算式的尾部数字受制约数几乎没有,所以只能通过头部数字来确定范围。89988000,所以即使第一行的乘数是最大值,所

12、得积仍不足,而加法最大进位为1。因此,可以确定第一行最高位为9 ,第四行最高位为7。9789887900,89687800,所以第一行为978。那么,第四行的数就确定了:9788=7824724方框内的数字不能是8,所以第二行的个位不能是6和8、9,又因为第三行是四位数,所以,不能是0或1。尝试978乘2、3、4、5、7、9,能使积的百位为8的是5(4890)、7(6846)。当6846时,最后一排方框中会有8,所以应该是5。那么,其它方框中的数也就能确定了。5490330118例2、如下图,所示算式的每个方框内填入一个数字,要求所填的数字都是质数,并使竖式成立。 7 【分析】设两个乘数为a7

13、b和cd,其中a、b、c、d只能是2、3、5、7.b、c、d中如果有一个2,则下面方框中会出现非质数。所以这三个数只能是3、5、7中选,且必定有一个为5。如果b5,则c、d必定有一个5,而573=365,577=385,不符合要求,所以b=5.5使a75c或d相乘大于2000,只有7753=2325,5755=2875,7755=3875,3757=2625,5757=4025,7757=5425。由此可见,符合要求的只有7753=2325733352235225255719例3、数数科学=学数学 在上面的算式中,每一汉字代表一个数字,不同的汉字代表不同的数字。那么“数学”所代表的两位数是多少

14、?【分析】用文字表示等式不容易分析,可以把数字用字母来表示。上边等式转化为:aabc=cacaa=a11,所以cac能被11整除,则c+c-a能被11整除,即2c=a或2c-a=11 cac=c101+a10, a11bc=c101+a10,即a|c101+a10,则a|c 即c=na(与2c=a矛盾),则有2c-a=11使2c-a=11,则c为6、7、8、9,分别代入得,a为1、3、5、7,符合c=na的数为c=6,a=1.即“数学”两字代表的是16.20例4、迎杯春杯=好好好 在上面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。那么“迎+春+杯+好”之和等于多少?【分析】用

15、文字表示等式不容易分析,可以把数字用字母来表示。上边等式转化为:acbc=dddddd=d111=d337,所以37是ac或bc的约数,因为两个乘数存在交换律,所以可设37为ac的约数,则ac为37或74.若ac=37,则bc=3d,因为c=7,所以d=9,b=2,则四个字相加为21.若ac=74,则bc=3d2,因为c=4,即3d的个位数是8,所以d=6,bc=9,不符合要求。21 知识点小结22解决巧填算符的基本方法:1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。2)逆推法:从算式的最后一个数字开始,逐步向前推想,从而得到等式。最值问题:1)横式转化为竖式数字谜,乘法转化为除法2)找突破口:末尾和首位,进位和错位,个位数字,位数的差别等3)采用特殊分析方法:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等4)除了数字谜问题常用的分析方法外,还常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值5)数字谜问题往往综合了数字的整除特征,质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。23竖式数字谜技巧:1)从首尾或者末尾找突破口

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论