版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、OpticsOptics北极光北极光Optics第一章第一章 光波的基本性质光波的基本性质1.11.1光的电磁理论基础光的电磁理论基础光是一种以场的形式按照电磁光是一种以场的形式按照电磁定律传播的电磁扰动定律传播的电磁扰动中大学水准的物理方程七个,大学水准的数学方程两个,中大学水准的物理方程七个,大学水准的数学方程两个,中学水准的生化方程两个中学水准的生化方程两个Optics1.1.1 麦克斯韦方程组和物质方程麦克斯韦方程组和物质方程Optics80d SsBSlstDjlHd)(dcSlstBlEddqVsDVSdd方程的积分形式方程的积分形式麦克斯韦电磁场麦克斯韦电磁场(1有旋电场有旋电场
2、tDjdddkE麦克斯韦假设麦克斯韦假设(2位移电流位移电流相互作用和交变的电场和磁场的总体,称为电磁场相互作用和交变的电场和磁场的总体,称为电磁场Optics9tDjH00B0DtBE涉及求解空间某给定点的电磁场的矢量问题:涉及求解空间某给定点的电磁场的矢量问题:麦克斯韦方程组的微分形式是麦克斯韦方程组的微分形式是 麦克斯韦方程组不仅适用于恒静的和缓变的电磁场,电磁波的实验麦克斯韦方程组不仅适用于恒静的和缓变的电磁场,电磁波的实验事实表明,它对于快速变化的电磁场也是适用的。事实表明,它对于快速变化的电磁场也是适用的。Opticskjizyx哈密顿算子是一种微分运算符号,同时又看成是矢量,哈密
3、顿算子是一种微分运算符号,同时又看成是矢量, 运算中具有矢运算中具有矢量和微分的双重性质。量和微分的双重性质。Opticsp kzpjypixpp npdsdp Optics对矢量场,在笛卡尔坐标系下其散度定对矢量场,在笛卡尔坐标系下其散度定 义为:义为:对速度矢量场,流体微团运动分析证明速度散对速度矢量场,流体微团运动分析证明速度散度的物理意义是标定流体微团运动过程中相对度的物理意义是标定流体微团运动过程中相对体积的时间变化率。体积的时间变化率。zVyVxVVzyx 一维正散度,就是一个水龙头,往外冒水,负散一维正散度,就是一个水龙头,往外冒水,负散度,就是下水池,往外吸水。度,就是下水池,
4、往外吸水。散度:描述的是向量场里一个点是汇聚点还是发源点散度:描述的是向量场里一个点是汇聚点还是发源点Optics三维向量场对某一点附近的微元造成的旋转程度。三维向量场对某一点附近的微元造成的旋转程度。Optics矢量分析基本公式矢量分析基本公式: :矢量积分定理:矢量积分定理:高斯定理高斯定理: : 是空间区域上三重积分与其边界上曲面积分之是空间区域上三重积分与其边界上曲面积分之间关系的定理。间关系的定理。斯托克斯:定理是关于曲面积分与其边界曲线积分之间关斯托克斯:定理是关于曲面积分与其边界曲线积分之间关系的定理。系的定理。VdFdVFll dFdF0)(fff2)(0)(FFFF2)()(
5、OpticszDyDxDzyx0zByBxBZyxtDyHxHtDxHzHtDzHyHZzxyyyzxxxyz麦克斯韦方程组的微分形式麦克斯韦方程组的微分形式0D0BtDjH0OpticstByExEtBxEzEtBzEyEzxyyzxxyztBE麦克斯韦方程组的微分形式麦克斯韦方程组的微分形式Optics式1 是电场的高斯定律。表示电场可以是有源场,此时电力线必须从正电荷出发,终止于负电荷。qVsDVSdd0D微分形式的方程组只在介质中物理性质连续的区域成立,在不连续的界面,应该用积分形式的方程组。Optics式2 是磁通连续定律,即穿过一个闭合面的磁通量等于零,表示穿入和穿出任一闭合面的磁
6、力线的数目相等。磁场是个无源场,磁力线永远是闭合的。0d SsB0BOptics式3 是法拉第电磁感应定律。指出变化的磁场会产生感应电场,这是一个涡旋场,其电力线是闭合的。麦克斯韦指出,只要所限定面积中磁通量发生变化,不管有无导体存在,必定伴随着变化的电场。SlstBlEddtBEOptics式4 是安培全电流定律。在交变电磁场的情况下磁场既包括传导电流产生的磁场,也包括位移电流产生的磁场。麦克斯韦认为,在激发磁场这一点上,电场的变化相当于一种电流,称为位移电流。位移电流是由变化电场产生的,与传导电流在产生磁效应方面是等效的,进一步揭示了电场和磁场的紧密关系。SlstDjlHd)(dctDjH
7、0Optics211.1.2物质方程物质方程(Material Equation)EDr0HBr0Ej0 (5)(6) (7)DEBHJEOptics线性光学:、与光强无关;在透明、无损介质中=0;非铁磁性材料: r=12、非线性:光强很强:非线性光学)(EfOptics1.1.3电磁波的波动微分方程电磁波的波动微分方程OpticsEEEEtHtE222)()()(0 E10222tEE从从MaxwellMaxwell方程到波动方程,证明电磁场的波动性方程到波动方程,证明电磁场的波动性在无限大均匀介质中,在无限大均匀介质中,常数,常数,常数,并且不存在常数,并且不存在自由电荷和传导电流自由电荷
8、和传导电流(0 0,j j0)0)。第三式的旋度代入四式,第三式的旋度代入四式,Optics同样:电场和磁场以波动形式在空间传播,传播速度为v;解的形式取决于边界条件。012222tHHOptics电磁波在传播介质中的绝对折射率真空光速/介质光速: 式中r,r分别为相对介电系数和相对磁导率。除了铁磁物质之外,对于大多数物质,r=l,因而上式变为 rr00vcnrn四、电磁波色散效应)()(rnOptics1889年,赫兹在实验中得到了波长为60厘米的电磁波,观察了电磁波在金属镜面上的反射,折射,以及干涉现象。赫兹的实验不仅以无可质疑的事实证实了电磁波的存在,而且也证明了电磁波具有光波的性质。
9、根据真空中的介电常数和磁导率得出真空中的光速:2.99794x108m/s 实验结果计算出电磁波在真空中的速度为: 3.1074x108ms, 测量的光速为:3.14858x108ms。 Optics无线电、光、射线本质一样,只是波长不同。可见光:可见光:390nm780nm390nm780nmOptics29760 nm400 nm 可见光 电 磁 波 谱红外线 紫外线 射 线X射线长波无线电波61010101410181022102104108101210161020102410010频率Hz1610810波长m4104100108101210短波无线电波电磁波谱Optics30无线电波c
10、m1 . 0m1034nm400nm760可 见 光红 外 线nm5nm400紫 外 光nm0.04nm5X 射 线nm04.0 射 线nm760nm1065Optics电磁波谱电磁波谱真空中波长真空中波长主要产生方式主要产生方式 由炽热物体、气体放电或其他光源激发分子或原子等微观客体所产生的电磁辐射红外线红外线mm60076. 0可见光可见光红红橙橙黄黄绿绿青青蓝蓝紫紫紫外线紫外线00400050AA446040004640446050004640578050005921578062005920760062000AOptics电磁波谱电磁波谱真空中波长真空中波长主要产生方式主要产生方式 用高
11、速电子流轰击原子中内层电子而产生的电磁辐射X 射线射线00504 . 0AA 射线射线以下04 . 0A由放射性原子衰变时发出的电磁辐射或用高能粒子与原子核碰撞所产生电磁辐射Optics1. 2 平面电磁波平面电磁波Opticsmk2令 xxFm补充: 弹簧振子的运动分析xtx222dd得xa2即omakxF具有加速度 与位移的大小x成正比,而方向相反特征的振动称为简谐运动aOptics简谐运动的微分方程积分常数,根据初始条件确定)cos(tAx解方程设初始条件为:解得xtx222dd000 = 时时,v vtxx简谐运动方程Optics36横波Optics平面简谐波的波函数设有一平面简谐波沿
12、 轴正方向传播, 波速为 ,坐标原点 处质点的振动方程为tAyOcosxuOyxuAAOPxOpticstAyOcosttAttyyOPcos)(uxtA cos波函数)(cosuxtAyOptics可得波函数的几种不同形式:利用kxtAxtAxTtAuxtAycos2cos2coscosT22uT和Optics振动方程波函数波动方程三维波动方程OpticsOptics01012222222222tBzBtEzE一、波动方程的平面波解 假设平面波沿直角座标系x、y、z的z方向传播,电磁场与x、y无关,电磁场只是z和t的函数。这样,电磁场的波动方程: 10222tEEOptics令:= z-vt
13、, =z+vt 代入上式得:f1和f2为z和t的两个任意矢量函数。f1表示沿z正向传播的波,f2表示以同一速度沿z负方向传播的波。因为我们讨论则是由辐射源(光源)向外的波的传播问题,所以只取第一项 :该波的最简单形式-简谐波)z()z(21vtfvtfE)(vtzfE 若波源是谐振动若波源是谐振动 沿波传播方向任取一点沿波传播方向任取一点P P点振动的方程点振动的方程tAtAE2coscos0)(2cos)(2cos)(2cosvtzAzvtvAvztAE二、平面波简谐波:余弦(或正弦)函数作为波动方程的特解1A和A分别是电振动和磁振动的振幅。2位相:余弦项的宗量 ,它决定平面波在传播轴上各点
14、的振动的状态。3简谐波波长:任意时刻位相相差2两点间距4等相面波面):某时刻场中位相相同的点 波前2)(vtz )(2cos)(2cosvtzABvtzAE)()(2CvtzCvtzTf122k2k波阵面波阵面 = 等相面是一个平面等相面是一个平面故称平面波故称平面波5时间角频率:时间角频率:6波矢量波矢量 沿等相面法线方向,亦为能量传播方向沿等相面法线方向,亦为能量传播方向其大小其大小(通常称波数通常称波数)zT为时间周期为时间周期 为空间周期为空间周期空间角频率空间角频率K时间角频率时间角频率Tv)cos()(2costkzAETtzAE平面电磁波各种波函数:平面电磁波各种波函数:)(2c
15、osvtzAE平面电磁波具有时间周期性和空间周期性平面电磁波具有时间周期性和空间周期性时间无限延续,空间无限延伸的波动时间无限延续,空间无限延伸的波动参量参量时间时间空间空间周期周期T 频率频率角频率T1122k平面电磁波的时间周期性和空间周期性平面电磁波的时间周期性和空间周期性Tv最显著的特点是:时间周期性和空间周期性:1、单色光波是一种时间无限延续、空间无限延伸的波动。2、从光与物质的作用来看,磁场远比电场为弱。所以通常把电矢量E称为光矢量,把E的振动称为光振动。平面简谐波 = 单色波三、一般坐标系下的波函数1、沿空间方向k传播的平面波函数:设k 的方向余弦在x, y, z上的投影为cos
16、, cos, cos, 那么:)cos(trkAE)coscoscos(costzyxkAE002kkkk0zk rxy0krxy 2、设k的方向余弦为cos, cos, cos, 那么在x, y, z上的空间周期:空间周期(k):不同考察方向有不同空间周期:在r方向上的空间周期:3、空间频率:cos)(sT0krxycos)(cos)(cos)(zTyTxTsss2222cos,cos,coscos)(ffffffffzyxzyxs四、复数形式的波动公式欧拉公式:运算结果取实部;优点:1、时间和空间因子分离;2、简化运算适用于线性系统)()(Re)cos(tkritkrieAEeAtkrAE
17、sincos)exp(ii)exp()exp(tirk iAE)(tkrieAE五、平面简谐波的复振幅波函数 = 空间位相 时间位相复振幅: 场振动的振幅和位相随空间的变化。时间位相:场振幅随时间变化。由于在空间各处随时间的变化规律相同所以可以在讨论时省略。)exp()exp(tirk iAE)exp(rk iAE*2EEAIrk irk ieAEeAE*22波函数互为共轭复数波函数互为共轭复数*简谐波的复指数表示方和矢量表示简谐波的复指数表示方和矢量表示简谐波的复指数表示简谐波的复指数表示复数空间:假设在复数空间:假设在2D空间的点空间的点P(x,y)P = x + i y = A cos(
18、) + i A sin()其中:其中:i = (-1)1/2令:令:exp(i ) = cos() + i sin()复指数形式:复指数形式:那么:那么:P = A exp(i ):振幅; :位相1122121211221212 exp()1 exp(/2) exp(-)cos( )sin( )1 cos( )exp()exp()21 sin( )exp()exp()2 exp()exp()exp () exp()/exp()/exp ()iiiiiiiiiiAiAiA AiAiAiAAi 复指数的运算:复指数的运算:exp()cos( )sin( )ii优点:运算方便优点:运算方便一维简谐波
19、的波函数也可表示为复指数函数取实部的形式:一维简谐波的波函数也可表示为复指数函数取实部的形式:)(expRe)cos(),(0000tkzjEtkzEtzE一般省去取实部的符号一般省去取实部的符号“Re”,一维简谐波的波函数直接表示为:一维简谐波的波函数直接表示为:)exp()()exp()(exp)(exp),(0000tjzEtjkzjEtkzjEtzE称为波的复振幅称为波的复振幅优点优点2:将波函数中与空间坐标有关的因子和与时间相关的因子分离开,:将波函数中与空间坐标有关的因子和与时间相关的因子分离开,对我们常常讨论的同频率波的叠加和分解时,可用复振幅来代表波函数,对我们常常讨论的同频率
20、波的叠加和分解时,可用复振幅来代表波函数,而不必在考虑时间项了。而不必在考虑时间项了。六、平面电磁波的性质 1、电磁波是横波、电磁波是横波 2、 相互垂直相互垂直 3、 同相同相HE、BE、00BkEkEkB0vBE1uEHxoBEp平面电磁波平面电磁波BCE例:振荡电偶极子的远场例:振荡电偶极子的远场近似的平面电磁波近似的平面电磁波EB传播方向传播方向一、球面波1、波函数:点光源,发出以0点为中心的球面,即波阵面是球面,这种波称为球面波。球面波阵面上各点的位相相同。通解:单色光波 :P点的位相:P点的振动矢量: t+ t+ t t)()tkrortvr()(exptkriAEr0112222
21、2tErEr)(1vtrfrE1.3 球面波和柱面波单位时间内通过任一球面(波面)的能量相同-能量守恒。 2、球面波的复振幅球面简谐波复数形式的波函数:复振幅定义为:振幅和空间位相因子:2144rIIprAAr1211rIIp)(exp1tkrirAE2121AAIIrp)exp()exp(1tiikrrAE)exp(1ikrrAE)(exp1tkrirAE 球面波的振幅不再是常量,与离开波源的距球面波的振幅不再是常量,与离开波源的距离离r成反比成反比 球面波的等相面是球面波的等相面是r的常量的球面的常量的球面球面简谐波复数形式的波函数球面简谐波复数形式的波函数二、 柱面波:柱面波是一个无限长
22、的线光源发出的光波,它的波阵面具有柱面的形状。柱面波的波动公式可以写为:复振幅:)(exp1tkrirAEexp1ikrrAE1.4.1 光源热光源、气体放电、激光光是电磁波,光源发光是物体辐射电磁波的过程。物体微观上可认为由大量分子、原子、电子所组成,可看成电荷体系,大部分物体发光属于原子发光类型。普通光源:自发辐射,普遍光源的发光是物质各个原子或分子发光的总效果。1.4 光源和光辐射高能级高能级E2低能级低能级E1光子光子1.4.4 实际光波由于原子的剧烈运动,彼此间不断地碰撞,因而原子发光是断续的。在最好的条件下(如稀薄气体发光),约为10-9秒的数量极。 1、原子发出的光波是由一段段有
23、限长的称为波列的光波组成的;2、实际光源发出的光波其光矢量的振动方向具有一切可能的振动方向。如果没有一个振动方向较之其他方向更占优势,这样的光为自然光。qqqq同一原子先后发出的光及同一瞬间不同原子发出的光的频率、振动方向、初相位、发光的时间均是随机的。不相干不相干( (不同原子发的不同原子发的光光) )不相干不相干( (同一原子先后发的同一原子先后发的光光) )结论:一般而言热光源及普通光源发出的光为非相结论:一般而言热光源及普通光源发出的光为非相干光。且同一光源上不同点发出的光也是非相干光。干光。且同一光源上不同点发出的光也是非相干光。理想的单色光具有恒定单一波长的简谐波,它是无限伸展的。
24、实际原子的发光是一个有限长的波列,所以不是严格的余弦函数,只能说是准单色光,即在某个中心频率波长附近有一定频率波长范围的光。例:普通单色光: 10-2 10 0A激光 :10-8 10-5 A 0 0II0I0 / 2谱线宽度谱线宽度衡量单色性好坏的物理量是谱线宽度1.4.3、辐射能在电磁学里,电、磁场的能量密度为:1、辐射强度矢量或坡印亭矢量 :单位时间内通过垂直于传播方向的单位面积的电磁能量,方向是能量的流动方向:)/)(1(21)(21322mJBEHBDEwEBEvSvBEvBEvwvS111)1(2222SEBBES1S在物理光学中,通常把辐射强度的平均值称为光强度,以I表示。 22
25、0220202121)(cos111AAvdttkrTAvdtEvTSdtTSTTT例例 光功率为光功率为100W的灯泡,在距离为的灯泡,在距离为10m处的处的波的强度时多少?波的强度时多少? 解:mVAAvImWrPSPI/74. 721/1096. 74/2222激光呢?激光呢? 1.5 电磁场的边值关系* 1.6 光在介界面上的反射和折射 反射、折射定理 菲涅耳公式 反射折射产生的偏振第一章 光的电磁理论 电磁场的边界关系光波在介质的分界面上电磁场量之间的关系称为电磁场的边界条件。 1、法向分量通过分界面时磁感强度的法线分量是连续的。若没有自由电荷,电感强度的法线分量也是连续的。 nnB
26、B21nnDD211.5 电磁场的边值关系 02211壁dBAnBAnBnnnnDDBBnBnB2121210磁感强度:假想在分界面上磁感强度:假想在分界面上作出一个扁平的小圆柱体。作出一个扁平的小圆柱体。0壁底顶dBdBdBdBhn1n2nAArVdVBdB0dtBdlEdlEdtBdlEdEDACDBCAB)(2、切向分量电矢量E和H的切向分量是连续的。矩形面积ABCD,令其四边分别平行和垂直分界面。 002211ltEltEdlEdlECDAB0)(0)(212121EEnEEtEEttl1t2thABCDtl 在两种介质的分界面上电磁场量是不连续的,但在没有面电荷和面电流的情况下B和D
27、的法向分量以及H和E的切向分量则是连续的。 0)(0)(0)(0)(21212121HHnEEnDDnBBn)(exp)(exp)(exp222211111111trkiAEtrkiAEtrkiAE112k1K1k2光在电介质分界面上的反射和折射,实质上是用介质的介电系数、磁导率和电导率表示大量分子的平均作用。1、证明k1、k2、k1共面。 以E1、E1、和E2分别表示入射波、反射波和折射波的电矢量分量,它们的波动公式应为: 1.6.1 1.6.1 反射定律和折射定律反射定律和折射定律1.6 光在两介质分界面上的反射和折射 对任何时刻t都成立,故有入射波、反射波和折射波的频率相同 :说明时间频
28、率是固有特性,不随媒质改变。211) (EnEEn)(exp)(exp)(exp222111111trkiAntrkiAntrkiAn211对整个界面上的位置矢量r都成立,所以:所以k1-k1)(k1-k2)与界面垂直,与法线平行,k1、k2、k1共面,同在入射面内。rkrkrk2110)(0)(2111rkkrkk)(exp)(exp)(exp222111111trkiAntrkiAntrkiAn2、反射定律:设在介质1和2中的位相速度v1和v2。因为: 所以:22111vkvkk) 2cos()2cos(1111rkrk0)(11rkk11112k1K1k23、折射定律:设在介质1和2中的
29、位相速度v1和v2。 因为: 所以:或-折射定律,或称斯涅耳(snell)定律。 ncnvkcnvkk2221111)2cos()2cos(2211rkrk0)(21rkk2211sinsinvv2211sinsinnn00.511.5200.511.51.44402 ( )3 ( )1.5710* * * *.2、菲涅耳公式、菲涅耳公式 关于反射波和折射波与入射波振幅和位相比值的关系关于反射波和折射波与入射波振幅和位相比值的关系式。把入射光分解为垂直于入射面的分量式。把入射光分解为垂直于入射面的分量E1s(E1s(正向指向读者)正向指向读者)和平行于入射面分量和平行于入射面分
30、量E1pE1p1、s波的反射和透射系数根据边值关系: 221111211coscoscospppsssHHHEEE0)(0)(2121HHnEEnE1sH1pH1pE1s112H2p1sspEnEH001EB2cos) (coscoscoscos221111222111111ssssssEnEEnEnEnEn所以:所以:代入E的表达式,各指数项相等并利用折射定律: ssssssAkAkAkAAA222111111211coscoscos121121111121121sincos)1 (sincos)1 (sincos) (sincossssssssAAAAAAA12122112sincossi
31、ncos)2(ssssAAAA垂直分量的透射系数垂直分量的透射系数:以上是电矢量垂直入射面以上是电矢量垂直入射面s波的菲涅尔公式。波的菲涅尔公式。)sin(cossin2211212sssAAt由此得出反射波和入射波的振幅之比(垂直分量的反射系数): )sin()sin(212111sssAAr2、p波的反射和透射系数反射系数和透射系数。在正入射或入射角很小时:菲涅尔公式有简单形式: )()(212111tgtgAArpps)cos()sin(cossin221211212pppAAt1111nnAArsss1212nAAtsss1111nnAArppp1212nAAtpppn1n2空气空气-
32、玻璃界面玻璃界面Incidence angle, qiReflection coefficient, r1.0.50-.5-1.0rprs0 30 60 90Brewsters angler|=0!nair 1 nair 1全偏振发生在全偏振发生在 “Brewsters angle”全反射发生在全反射发生在“临界角临界角 qcrit arcsin(nt /ni)n1n22 2光从光密介质入射到光疏介质光从光密介质入射到光疏介质n1nn2或n1n2n1n2才会发生全反射。才会发生全反射。5 5、反射率和透射率、反射率和透射率表示反射波、折射波与入射波的能量关系表示反射波、折射波与入射波的能量关系
33、 单位时间投射到界面单位面积上的能量为单位时间投射到界面单位面积上的能量为W1W1,反、透,反、透射光的能量分别为射光的能量分别为W1W1、W1W1,不计吸收散射等能量损耗,不计吸收散射等能量损耗,则反射率则反射率R R、透射率、透射率T T,为:,为:1211WWRTWI AWWR 、T 为界面功率密度比, 而非强度比。考虑界面上一单位面积,设入射波、反射波和折射波的光强分别为 通过此面积的光能为 211III、A0A1101101202coscoscosAAAAAA反射波反射波121111cos21cos11AIW透射波透射波22222222cos21cosAIW12111111cos21
34、cosAIW入射波入射波平面波的光强度:单位时间内通过垂直于传波方向的单位面积的能量 :11212211211222222222111111coscoscoscosWWWWIARrIAAntTnA界面上反射波、透射波的能流与入射波能流之比为假定 ,那么211212nn11222122111122212211coscoscoscosnntWWTrWWRnntWWTrWWRppppppppssssssss光波分别只有s和p分量时:则一般光波:pspspspsWWWWTWWWWR11221111;当入射波电矢量取任意方位角时,222222cossincossin)()(cossincossinpsp
35、spspspsTTTRREEEEREEEEEEEEEspEsEp当不考虑介质的吸收和散射时,能量守恒:11ppssTRTR1TR自然光:把光矢量分解为垂直于入射面和平行于入射面的两个分量。光在空气和玻璃分界面反射时Rs, Rp, Rn随入射角变化的曲线。可见自然光在45的区域内反射率几乎不变,约等于正入射的值。02040608010000.810.9970Rs ( )Rp ( )Rn ( )9001803.14)(21111pspsRRWWWWWRn自然光在自然光在 的区域内反射率几乎不变,约等于正入的区域内反射率几乎不变,约等于正入射的值。正入射时,射的值。正入射时,014
36、52)11(nnRn 在空气在空气玻璃玻璃n=1.52n=1.52界面反射的情况,界面反射的情况, 约约4%4%的光能量被反射。的光能量被反射。若包含若包含6 6块透镜系统,反射面块透镜系统,反射面1212面,若面,若n=1.52n=1.52,光在各面,光在各面入射角很小,透过这一系统的光能量为入射角很小,透过这一系统的光能量为043. 0nR1112259. 0)043. 01 (WWWW1为入射光能量,由于反射而损失的能量占41%。平面简谐电磁被在真空中沿正x方向传播,频率4x1014Hz(兰光),电场振幅为1414v/m。如果该电磁波的振动面与xy平面成45度角,试写出E和B的表达式。已
37、知电场振幅A, 显然在z,y方向的分量为:mVAAzmVAAy/1045cos/1045cos)(2cos)(2costcxATtxAE)/103(1042cos/100814tsmxmVEzEyEx)/103(1042cos/103/10/08148tsmxsmmVcEzByBxcEyBzcEzByBx/0zyxEEEzyxzyxEBEtBE000,1,)/103(1042cos/103/10/8148tsmxsmmVcEyBz线偏振光的偏振面和入射面间的夹角称为振动的方位角,设入射线偏振光的方位角为 。入射角为,求反射光的方位角。(已知两介质的折射率为n1和n2:)。pSE1pE1sE1s
38、H1pH1pE1s112H2ptgrrErErEEtgpsppssps1111)sin()sin(2121sr)()(2121tgtgrptgtg)cos()cos(12122212sin1cos)(nn根据折射定律:tgnnnnnnnntg221221221221)sin(1cossin)sin(1cossin钠黄光D双线包含的波长1=5890埃,2=5896埃,设t=0时刻两列波的波峰在0点重合,问:1、自0起,传播多远两列波的波峰还会重叠?2、经过多长时间以后,在0点还会出现波峰重叠现象?解:波峰再次重叠时,传播距离应为1,2的最小公倍数。29453)(12112nnknkklm1282
39、107879. 5103001736. 02001736. 012945, 3cltmklkknmm)就会得到整数:取1.7 全 反 射 第一章 光的电磁理论 1.7 全 反 射 情况称为全反射。入射光全部反射,这种角不存在。,满足这个结果的折射,则满足,若入射角时,由折射定律当1sinsin1sinsin21211122121nnnnnn。临界角:角发生全反射的最小入射光疏介质。,光波由光密介质射向全反射的界面条件:12121sinnnnnc全反射现象的特点: 无透射能量损失 反射时有位相变化 存在隐失波1.7.1、反射系数和相位全反射时:代入反射系数rs和rp公式得:复数表达为:21112
40、12221sinsinsinsincosninnn 212122121221212121sincossincossincossincosninninrninirpspippsisserrerr复数的模表示反射波和入射波实振幅之比,幅角表示反射时的位相变化。0.60.811.21.443210113.141rs ( )rp ( )arg rs ( )()arg rp ( )()1.570.73因为:|rs|=1,所以利用欧拉公式:得:同理:21212121sincossincosniniesiieeseessisisisi2sin2cos1212cossincos1sin2nstgss12212
41、cossincos1sin2nnptgpp122121sinsincos221222ntgtgtgtgtgpsps过程,证明光全部反射。由此可得反射率,等,共轭复数,故其模值相式中的分子分母是一对、11pspspsRRrrrr122121212cossin2cossin2nntgntgps可求得由平行分量反射系数式可求得由垂直分量反射系数式变化。再分析全反射时的位相122121sinsincos22ntgtgpsps位相差为波有不同的位相变化,波和全反射界面条件下,40506070809003.243.1420.059s ( )p ( )9041.8471803.141、入射
42、角等于临界角,两个分量的位相差为零,如果这时入射光为线偏振光,则反射光也为线偏振光。2、入射角大于临界角,且入射线偏振光的振动面与入射面的交角又非0或/2,这时反射光的两个分量有一定的位相差,反射光将变成椭圆偏振光。40506070809003.243.1421.187103s ()p () ()9041.8471803.14讨论:(一反射比在全反射区间,所有光线全部返回介质一,光在界面上发生全反射时不损失能量。入射角从布儒斯特角变化到临界角时,反射率在临界角附近发生急剧变化。可利用临界角高精度对焦。(二相位变化在全反射条件下,两个分量有不同的位相变化,两分量的位相差为1ps
43、RR122121sinsincos22ntgtgps1.7.2、倏逝波全反射时光波将透入第二介质很短的一层表面(深度约为光波波长,并沿界面流动约半个波长再返回第介质。-隐失波倏逝波)。透射光波函数: 在xz平面上:代入全反射时的cos2和sin 2:)exp22trkiAE()exp2222tzkxkiAEzx(inikkknkkkzx1sincossinsin2122222122222zx透射波函数:表示一个沿x方向传播的振幅在z方向按指数规律变化的波。穿透深度定义为振幅衰减到1/e时的z0。约为一个波长。波长:速度:)exp)exp(222txkizAEx(21220sin1nknz12s
44、in2xk11sin0510711061.510621062.510600.160.320.480.640.80.7829.355 107A z 453.14180A z 603.141802.4 1061 107z倏逝波:全反射时全部光能都反回第一介质,光波将透入第二介质很短的一层表面(深度约为光波波长,并沿界面流动约半个波长再返回第一介质。第二介质表面的这个波称为倏逝被。k1xy等幅面等幅面等相面等相面倏逝波第二介质中存在倏逝波,但是倏逝波沿z方向的平均能流为0。(流入的等于流出的) 反射光束有一个侧向位移半个波长)。v 利用全反射时的能量特性,改变光的传播方向、传递能量。 v利用倏逝波特
45、性产生的受抑全反射效应能制成光调制器或光输出耦合器。v 利用全反射时的位相变化,选取适当的折射率和入射角,可改变入射光的偏振状态。利用全反射来改变光线的传播方向和使像倒转。(a)(c)(b)潜望镜潜望镜光导纤维光导纤维n传导光能,传递光学图象。激光可变输出耦合器激光可变输出耦合器在斜面间的空气隙内的隐在斜面间的空气隙内的隐失波场的耦合作用下,光失波场的耦合作用下,光波可以从一块棱镜透射到波可以从一块棱镜透射到另一块棱镜,透射量的多另一块棱镜,透射量的多少与间隔有关少与间隔有关棱镜波导耦合器:可以用来将光信号方便有效地耦棱镜波导耦合器:可以用来将光信号方便有效地耦合进薄膜波导中,或者将在薄膜波导
46、中传播的光信合进薄膜波导中,或者将在薄膜波导中传播的光信号引出波导。号引出波导。 近场扫描光学显微镜近场扫描光学显微镜NSOMNSOM用于观察纳米尺度表面结构用于观察纳米尺度表面结构 全反射棱全反射棱镜工作台镜工作台(样品)(样品)He-Ne激光器激光器反馈放大电子糸统光纤光纤探针探针压电陶瓷压电陶瓷光电探测器光电探测器1.9 光的吸收、色散和散射 1.9.1、光的吸收一般吸收:吸收很少,并且在某一给定波段内几乎是不变的;可见光石英)选择吸收:吸收很多,并且随波长而剧烈地变化。红外光3.55.0m) 任一物质对光的吸收都由这两种吸收组成。假如:则沿z轴传播的平面波: 光强:I0是z=0处的光强
47、, 为物质的吸收系数)1 (inn)(exp)exp()(exptzcnizcnAtzcniAE)exp()2exp(02*zIzcnAEEI 吸收定律吸收定律- 布格定布格定律律 稀溶液中稀溶液中,有比尔定有比尔定律律0lII edIIdx :吸收系数吸收系数00IlIdIdxI dIdxI )0(dI- 布格定律或朗伯定律布格定律或朗伯定律dxdII dxx Ix0Ixl0123400.5112.479 103I z( )40zAcleII02、选择吸收:若物质对某些波长的光吸收特别强, 则物质有选择吸收可见光入射后, 变为彩色.3. 吸收光谱线状谱带状谱连续谱发射谱吸收谱v(1对可见光,
48、v金属 、玻璃 各种物质的吸收系数的差别是很大。v (2大多数物质的吸收具有波长选择性。v(3对于液体和固体,吸收带都比较宽,而对于气体则比较窄,通常只有103nm量级。1610cm1210cm 光的色散效应是一种光在介质中传播时,其折射率随频率或波长而变化的现象。正常色散:在物质透明区内,它随着光波长的增大折射率减小且色散曲线是单调下降的。 此现象由科希(Cauchy)色散公式来描述。 42cbn1.9.2、光的色散:正常色散曲线正常色散曲线正常色散正常色散v反常色散:反常色散:发生在物质吸收区内,它随光波长增加而折射率增加,经验公式为塞耳迈耳方程:v 。202221 bn1.9.3 光的散
49、射当光通过光学不均匀的物质时,从侧向可以看到光的现象 分类:布里渊散射受激拉曼散射自发拉曼散射拉曼散射非线性ll米氏散射:线度瑞利散射:线度线性10/规律:对于半径r0.3 m的粒子,波长在1m附近,瑞利定律的误差1;当粒子半径r0.3 m时,采用米氏定律。lleIeIIsa0)(0:a衰减系数 :s散射系数 1.瑞利散射: 散射光强与入射光波长的四次方成反比,即为光源中强度按波长的分布函数应用:红光散射弱、穿透力强41I02107410761078107110600.5111.6 103Is ( )1 1062 107AB4)(fI2. 米氏散射:() 的经验公式表示为:V为能见度km),为
50、传输波长nm)。q与能见度有关,较传统的观点认为它们之间的关系如下:qnmV)550(91. 3)(kmVkmVkmkmVq6585. 05063 . 1506 . 13/1200400600800012343.0370.043 1.650() 1.310() 0.585133800200 pV3.91550pV3.非线性散射-拉曼散射是研究分子结构的一种很重要的方法在非弹性碰撞过程中,光子和分子有能量交换,光子转移一部分能量给分子或者从分子中吸收一部分能量,从而使其频率发生改变 散射光谱中,除有与入射光频率0 相同的谱线外,还有频率为0 1 ,0 2, . 的强度较弱的谱线。 hv0hv0h
51、v0E1E2?E=h?vv0 第一章重点v平面波、球面波的性质和数学表达v坡印亭矢量和光强,二者之间的关系v菲涅尔方程及菲涅尔公式的物理意义、图形特点v反射率和透射率v布儒斯特角、全内反射1.1 一个平面电磁波可以表示为求1该电磁波的频率、波长、振幅和原点初相位为多少? (2波的传播和电矢量的振动取哪个方向? (3与电场相联系的磁场B的表达式。,0,2)(102cos2, 014zyxEtczEE2)(102cos214tczEy解:(解:(1 1) 所以电磁波的频率所以电磁波的频率 波长波长 振幅振幅 A=2V/m A=2V/m 原点初相位原点初相位(2 2波的传播方向沿波的传播方向沿Z Z
52、方向传播,电矢量沿方向传播,电矢量沿y y方向振动。方向振动。(3 3由由 知,磁场沿知,磁场沿-x-x方向振动,且方向振动,且 所以所以 2)(102cos22)1010(2cos2141414ctzctczmmcHzT31031010161414200zEkvB01cvBE0,2)(102cos1032148zyxBBtczB1.2 一个线偏振光在玻璃中传播时可以表示为 ,试求:(1光的频率;(2波长;(3玻璃的折射率。, 0, 0zyEE)65. 0(10cos10152tczEx)65. 0(10cos10152tczEx)65. 0(103 . 12cos10)10210265. 0
53、(2cos1015215152ctzctcz解:解: 所以所以 (1光的频率光的频率 (2波长波长 (3玻璃的折射率玻璃的折射率n=c/v=1/0.65=1.53HzT141051mmv39. 01033 . 17介1.5 在与一平行光束垂直的方向上插入一透明薄片,其厚度 h=0.01mm,折射率n=1.5,若光波的波长=500nm,试计 算插入玻璃片前后光束光程和位相的变化。解:光程变化解:光程变化=nh-h=(n-1)h=510-6m 平面电磁波在介质中传播的的波函数为平面电磁波在介质中传播的的波函数为 位相的变化为位相的变化为 )(2cos2cos2cos2cosctnzAnvtnzAv
54、tznAvtzAE空空空介)()()(2022空空)(znz1.6 地球表面每平方米接收到来自太阳光的能量约为133kw,若把太阳光看作是波长600nm的单色光,试计算投射到地球表面的太阳光的电场强度。mVcIAAcI/10108542. 81031033. 12221312830201.7 1.7 在离无线电反射机在离无线电反射机10km10km远的处飞行的一架飞机,收到功率远的处飞行的一架飞机,收到功率密度为密度为10W/m210W/m2的信号。试计算:的信号。试计算:(1 1在飞机上来自此信号的电场强度大小;在飞机上来自此信号的电场强度大小;(2 2相应的磁场强度大小;相应的磁场强度大小
55、;(3 3发射机的总功率。发射机的总功率。解: 已知P0= 10W/m2 r=10km (1)由 得此信号的电场强度大小为 (2由 知相应的磁场强度大小为2.910-10T (3发射机的总功率P=P04r21.26104WmVcIAAcI/086. 0221020cvBE1.8 1.8 沿空间沿空间K K方向传播的平面波可以表示为方向传播的平面波可以表示为 试求试求K K方向的单位矢量方向的单位矢量K0K01016)432(exp1008tzyxiE0000292293292zyxK解:由平面波的波函数可知解:由平面波的波函数可知 Kx=kcos=2 Ky=kcos=3 Kz=kcos=4 k
56、2=22+32+42=29所以所以k方向的单位矢量方向的单位矢量1.16 证明(1)rs=-rs (2) rp=-rp (3)tsts =Ts (4) tptp =Tp )()(212111tgtgAArppp)sin()sin(212111sssAAr)sin(cossin2211212sssAAt)cos()sin(cossin221211212pppAAt1.19 证明光波以布儒斯特角入射到两介质界面时,tp=1/n,其中n=n2/n1证明:)cos()sin(cossin221211212pppAAtntg1212且光波以布儒斯特角入射到两介质界面时ntgtp11cossin2cos2
57、)2sin(cos2111121121.21 光束垂直入射到45直角棱镜的一个侧面,光束经斜面反射后从第二个侧面透出。若入射光强度为I0,问从棱镜透出光束的强度为多少?设棱镜的折射率为1.52,并且不考虑棱镜的吸收。 解: 光束垂直入射 透射率为T1=n2/(n+1)20.96 因为 sinc=1/1.52 c45 所以 光束在直角棱镜的斜面上发生全反射 R2=1 全反光束经直角棱镜的直角边垂直透射出 其透射率T3=T1 I=I0T1R2T3 0.92I01.27 一直圆柱形光纤,光纤纤芯的折射率为n1,包层的折射率为n2,并且n1n2.(1证明:(2若n1=1.62,n2=1.52,求最大孔径角。 2221sinnnu222121221211sin1sinnnnnnnuc解:(1)证明:n1sinc=n2 sinu=n1sin(/2 - c)=n1cos c (2) n1=1.62,n2=1.52代入式子 1.28 弯曲的圆柱形光纤,光纤芯和包层的折射率分别为n1和n2(n1n2),光纤芯的直径为D,曲率半径为R。证明入射光的最大孔径角2u满足关系式:22221)21 (sinRDnnu2cos2)90sin(sinDRuDRuRccos1sin2uucRDnunu2211sin)21 (1sinsin22221)21 (sinRDnnu12sinnnc Rcuu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 客舱服务英语(陕西职业技术学院)知到智慧树答案
- 《职业形象管理》课件
- 生猪养殖场废水深度处理及粪污生产有机肥综合利用项目建设可行性研究报告
- 生态蔬菜种植园项目可行性研究报告
- 美术课件设计你的房间
- 《红眼病鉴别表》课件
- 2015年浙江义乌中考满分作文《我长大了》10
- “一定能完成”的新年计划
- 物理教师心得体会
- 市政工程安全质量协议
- 中华系列期刊目录
- 如何当好中层干部
- 文史哲要籍导读知到章节答案智慧树2023年华北科技学院
- 特种作业电工上岗证低压电工作业培训
- 磨难的议论文
- 创新设计前沿知到章节答案智慧树2023年浙江大学
- 三角形的认识(强震球)
- 心理成长与发展智慧树知到答案章节测试2023年武汉职业技术学院
- SOAP病历(中医)的书写
- GB/T 37874-2019核酸提取纯化方法评价通则
- 有限空间作业安全监理实施细则
评论
0/150
提交评论