




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 (2019全国全国卷文科卷文科)已知双曲线已知双曲线 的一条准线为的一条准线为 ,则该双曲线的离心率为,则该双曲线的离心率为 ( )A B C D)0( 1222ayax23x232326332 x y oF1F2 b cos 1e2axc 222222cabeaa=1+k2.(k为双曲线渐近线的斜率为双曲线渐近线的斜率.) (2019全国东北理科卷全国东北理科卷)设双曲线的焦点在设双曲线的焦点在x轴上轴上,两条渐近线为两条渐近线为y = x,则该双曲线的离,则该双曲线的离心率心率e=( ) A. 5 B. C. D.5525412222222cabeaa=1+k2. 其中其中k为双曲线渐近
2、线的斜率为双曲线渐近线的斜率.C e2=5/4. (2019全国全国卷文科卷文科)已知双曲线已知双曲线 的一条准线为的一条准线为 ,则该双曲线的离心率为,则该双曲线的离心率为 ( )A B C D)0( 1222ayax23x232326332 x y oF1F2 ba1ka232ac2;3ke将将k2=e2-1代入上式代入上式, 整理得整理得9e4-9e2-4=0e2=4/3.D2212212,2 ,1.3bPFFFcaPFFF2221,32ba ab423440kk 已知F1、F2为双曲线 (a 0,b 0)的焦点,过F2作垂直于 x 轴的直线交双曲线于P, 且PF1F230(如图), 求
3、双曲线的渐近线方程. 22221xyabxyoPF1F2即即 ec 3a, e23,11costan2.3e 已知F1、F2为双曲线 (a 0,b 0)的焦点,过F2作垂直于 x 轴的直线交双曲线于P, 且PF1F230(如图), 求双曲线的渐近线方程. 22221xyabxyoPF1F2|PF1|2|PF2|, exP+a=2(exP-a),exP3a, k2=e2-1=2.y= x.2 (2019福建理科福建理科) 已知已知F1、F2是双曲线是双曲线 - = 1(a0, b0)的两焦点的两焦点, 以线段以线段F1F2为边作正三角为边作正三角形形MF1F2, 若边若边MF1的中点在双曲线上,
4、则双曲的中点在双曲线上,则双曲线的离心率是线的离心率是 ( ) A. 4+2 B. -1 C. D. +1 22xa22yb333312 x y oF1F2MA30 x1由已知由已知, |AF1|=c, |AF2|= c,3即即 ex1-a=c, ex1+a= c, 3两式相减:两式相减:2a=( -1)c, 3两边同除以两边同除以a得得 e=231.31(2019福建理科福建理科)已知已知F1、F2是双曲线是双曲线 (a 0,b 0)的两个焦点,以线段的两个焦点,以线段F1F2为边作正为边作正三角形三角形MF1F2, 若边若边MF1的中点在双曲线上的中点在双曲线上, 则则双曲线的离心率是双曲
5、线的离心率是 ( ) A. 4+2 B. -1 C. D. +122221xyab333312由于由于|NF1|=exN-a=c, 即即exN+a= c3 y x oMF2NF1又又|NF2|= |NF1|,3D3 2exN=( +1)c将将xN=c/2代入即得代入即得. 要点提炼:设双曲线的离心率为要点提炼:设双曲线的离心率为e, 一条有较一条有较小倾斜角小倾斜角 的渐近线的斜率为的渐近线的斜率为k,则双曲线的则双曲线的如下性质在解题时十分有用:如下性质在解题时十分有用:过焦点作一条渐近线的垂线过焦点作一条渐近线的垂线,垂足在双曲线垂足在双曲线的准线上的准线上, 垂线段的长等于半虚轴长;垂线
6、段的长等于半虚轴长;arccos(1/e); e2k21. 此外此外, 双曲线的焦半径公式:双曲线的焦半径公式:r1|ex0a|,r2|ex0a| 在处理涉及双曲线在处理涉及双曲线的焦半径问题时是十分有用的的焦半径问题时是十分有用的,必须要学生熟必须要学生熟记它记它.1122,PFr PFr设设.162212221rrrr22212(2 )4 520,rrc, 221rr121212F PFSr r 设而不求 (1994全国全国)设设F1, F2为双曲线为双曲线 的两个焦的两个焦点,点点,点P在双曲线上,且在双曲线上,且F1PF2=90则则 F1PF2的面积是的面积是 ( ) A. 1 B.
7、C. 2 D.1422 yx255124rr =1.A x y oF1F2P1 21212PF FPSFFy222244,5xyxy211.55Pyy12121112 51.225PF FPSF Fy 以以F1F2为直径的圆为直径的圆的方程是:的方程是: x2+y2=5, (2019全国全国卷卷)已知双曲线已知双曲线 的焦的焦点为点为F1、F2, 点点M在双曲线上且在双曲线上且MF1MF2=0,则则点点M到到 x轴的距离为轴的距离为( )A B C D1222yx43532 333 x y oF1F2Mx2+y2=3MF1MF2=0MF1MF2x2+y2=3,2x2-y2=22P y =4.3
8、平几知识的应用C 已知F1、F2为双曲线 (a 0,b 0)的焦点,M为双曲线上的点, 假设F1MF290, 那么F1MF2的面积等于_. 22221xyab x y oF1F2M一般化x2+y2=c2,b2x2-a2y2=a2b2 c2y2=b2(c2-a2)=b4 y=b2/c SF1MF2=b2. (2019全国全国卷卷)已知双曲线已知双曲线 的焦的焦点为点为F1、F2, 点点M在双曲线上且在双曲线上且MF1MF2=0,则则点点M到到 x 轴的距离为轴的距离为( )A B C D1222yx43532 333 x y oF1F2MCSF1MF2=b2=2设点设点M到到 x 轴的距离为轴的
9、距离为d,那么那么 cd=S d= 2.3 将直角坐标系中的曲线平移将直角坐标系中的曲线平移(或平或平移坐标轴移坐标轴),曲线上任意两点之间的距,曲线上任意两点之间的距离弦长)、两条定弦之间的夹角、离弦长)、两条定弦之间的夹角、以及曲线上任一点处的切线的斜率,以及曲线上任一点处的切线的斜率,都是平移变换下的不变量都是平移变换下的不变量. (2019 (2019全国全国) )直线直线l l过抛物线过抛物线y2y2a(x+1)a(x+1)(a0)(a0)的焦点的焦点, , 并且与并且与x x轴垂直轴垂直, , 若若l l被抛被抛物线截得的线段长为物线截得的线段长为4, 4, 则则a a . . 直
10、线直线l l过抛物线过抛物线 y2y24(x+1)4(x+1)的焦点的焦点, , 并且与并且与x x轴垂直轴垂直, , 假设假设 l l 被抛物线截得的被抛物线截得的线段长为线段长为 . . 4 4 y2a(x-3)(2019 新课程卷设新课程卷设a0,f(x)=ax2+bx+c, 曲曲线线 y=f(x)在点在点 P(x0, f(x0)处的切线的倾斜角的处的切线的倾斜角的取值范围为取值范围为 ,则点,则点P到曲线到曲线y=f(x)对称轴对称轴距离的取值范围为距离的取值范围为 ( ) A. B. C. D.0,410,a10,2a0,2ba10,2ba 曲线曲线 y=f(x)在点在点 P(x0,
11、 f(x0)处处的切线的斜率的切线的斜率 k=2ax0.依题意依题意,0k1,即即 02ax01.010.2xa B f (x)=2ax, x y oFP y=ax2 y=-14a y =2ax, y y | | =1.=1.12xa21xya 证明:点证明:点P处的切线斜率为处的切线斜率为1 x y oFP 证明:点证明:点P处的切线斜率为处的切线斜率为1 法一:由法一:由 y2=2px 2yy=2p,pyy1.ypy法二:由法二:由2ypx1222pypx 21.pxyF 回回 顾顾 y2=2px PF = p x y oA2px x=- 命题命题1 设抛物线设抛物线y2=2px(p0)的
12、通径为的通径为PQ,则,则抛物线在点抛物线在点P、Q处的切线的斜率分别为处的切线的斜率分别为1和和-1,且切线通过抛物线的准线与且切线通过抛物线的准线与x轴的交点轴的交点.xyOPQF2px= -M x y oFP (2019 全国东部卷全国东部卷) 设抛物线设抛物线y2=8x的准线与的准线与x轴交于点轴交于点Q,若过点,若过点Q的直线的直线l与抛物线有公共与抛物线有公共点,则直线点,则直线l的斜率的取值范围是的斜率的取值范围是 ( ) A. B. -2,2 C. -1,1 D. -4,41 1, 2 2 y2=18x y2=8(x-6)C 已知已知F为抛物线为抛物线C:y24x的焦点,的焦点
13、,P为为C上上的任一点,过点的任一点,过点F且斜率为且斜率为1的直线与的直线与C交于交于A、B两点,假设两点,假设PAB的面积为的面积为4 ,则这样的点,则这样的点P有有 ( ) (A) 1个个 (B) 2个个 (C) 3个个 (D) 4个个 2AB:x-y-1=0 求得求得|AB|=8 ;取点取点M(1,2) MAB的面积为的面积为42C2 点点M到直线到直线AB的距离为的距离为 x y oABFM 引申引申1椭圆通径一个端点处切线的斜率椭圆通径一个端点处切线的斜率 x y oF1P22,byaxa由由2212.2bxyaax 得得22.xcbcyeaac 引申引申2 双曲线通径端点处切线的
14、斜率为双曲线通径端点处切线的斜率为e. 引申引申3 过椭圆过椭圆 上一点上一点 P (x0, y0) 的切线方程为:的切线方程为:22221(0)xyabab00221;x xy yab20020().b xkfxa y 切 引申引申4 过双曲线过双曲线 上一点上一点 P (x0, y0) 的切线方程为:的切线方程为:22221(0,0)xyabab00221;x xy yab20020().b xkfxa y切 引申引申5 过抛物线过抛物线y2=2px上一点上一点P (x0, y0)的的切线方程为:切线方程为: y0y=p (x+x0 ) y0y=p (x+x0 )k切切=0py 命题命题2
15、 2 若若PQPQ为焦点在为焦点在x x轴上的圆锥曲线轴上的圆锥曲线的通径,则曲线在点的通径,则曲线在点P P、Q Q处的切线的斜率处的切线的斜率为为e e和和-e-e,且切线通过相应准线与,且切线通过相应准线与x x轴的交轴的交点点. . 或表述为:过焦点在或表述为:过焦点在x轴上的圆锥曲线轴上的圆锥曲线的准线与的准线与x轴的交点,且斜率为轴的交点,且斜率为e(或或-e)的直的直线,与圆锥曲线相切,且切点为圆锥曲线线,与圆锥曲线相切,且切点为圆锥曲线一条通径的端点一条通径的端点. x y o作离心率为作离心率为1/2的椭圆的椭圆 x y oFAB|OF|c, |FA|b, |OA|a. c|
16、AB|2ab |AB|2abc2.be作离心率为作离心率为2的双曲线的双曲线 (2019湖南理科卷湖南理科卷)如图,过抛物线如图,过抛物线x2=4y的对的对称轴上任一点称轴上任一点P(0,m) (m0)作直线与抛物线交于作直线与抛物线交于A,B两点,点两点,点Q是点是点P关于原点的对称点关于原点的对称点. ( I ) 设点设点P分有向线段分有向线段AB所成的比为所成的比为,证明,证明QP(QA-QB); ( II ) 设直线设直线AB的方程是的方程是x-2y+12=0,过,过A、B两点两点的圆的圆C与抛物线在点与抛物线在点A处有处有共同的切线,求圆共同的切线,求圆C的方程的方程. x y oA
17、PBQ x y oAPBQ(0,-m)(x1,y1)(x2,y2)AP=(-x1, m-y1), PB=(x2, y2-m), 由已知由已知, x1=-x2, y1-m=-(y2-m).即即2222221212,.xxymym因为因为A、P、B共线共线, 且且AP=PB.QP= QA+ QB= (QA+QB).11111欲证欲证QP(QA-QB), 只须证只须证QP (QA-QB)=0, 即证即证|QA|2-2|QB|2=0. 而而 |QA|2-2|QB|2= +(y1+m)2-2 +(y2+m)221x22x光 的 反 射基本原理: ()光的传播遵循光的传播遵循“光行最速原理光行最速原理”;
18、 ()光的反射应满足:光的反射应满足:“入射角入射角=反射角反射角”;由此推得由此推得 入射线与反射线关于法线对称入射线与反射线关于法线对称; 投影线为水平线时投影线为水平线时, k入射线入射线+k反射线反射线=0.光 的 反 射基本技巧: 始点始点终点终点 入射线入射线; 始点始点终点的对称点终点的对称点反射线反射线.始点的对称点始点的对称点终点终点 (1989全国全国) 自点自点A( -3, 3 )发出的光线发出的光线 l 射到射到x轴上被轴上被 x 轴反射,其反射光线所在直线与圆轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切相切, 求光线求光线 l 所在直线的方所在直线
19、的方程程. (x-2)2+(y-2)2=1 x1 y o1-1-1.A.A?始点的对称点始点的对称点终点终点 -反射线;反射线;终点的对称点终点的对称点始点始点 -入射线入射线. (2019江苏江苏) 点点P(-3,1)在椭圆在椭圆 的左准线上的左准线上, 过点过点P且方向为且方向为a=(2,-5)的光线的光线, 经经直线直线y=-2反射后通过椭圆的左焦点反射后通过椭圆的左焦点, 则这个椭圆则这个椭圆的离心率为的离心率为 ( ) A. B. C. D. 222210 xyabab33132212 x y o P(-3,1) F(-c,0)MNl解法一:依题意依题意, 入射线方程为入射线方程为y
20、-1=- (x+3)52令令y=-2, 得得M(- , -2);95令令y=0, 得得N(- ,0).135F(-1,0) a2=323ac33e x y o P(-3,1) F(-c,0)MNl解法二: 点点F关于直线关于直线y=-2的的对称点为对称点为Q(-c,-4 ).c=1 a2=323ac 依题意依题意, kPQ=- ,52Q33e 要点提炼: 光反射的理论依据,是物理学中的光行最速原理;数学中处理这类问题的基本方法是运用平面几何中的对称性,这就是“通法”. 只有把握住“通法”,不论题目如何变化,你才能在解题时得心应手,游刃有余. (2019江苏卷江苏卷)已知椭圆的中心在原点,离心已
21、知椭圆的中心在原点,离心率为率为 ,一个焦点是,一个焦点是F(-m,0) (m是大于零的常是大于零的常数数). ()求椭圆方程;求椭圆方程; ()设设Q是椭圆上的一点,且过点是椭圆上的一点,且过点F,Q的直的直线线l与与y轴交于点轴交于点M,假设,假设|MQ|=2|QF|,求直线,求直线l的斜率的斜率.12()22221.43xymm()22221.43xymm x y oMQF|MQ|=2|QF|()分析:分析:由题设,由题设,|xM-xQ|=2|xQ-xF|,即即|xQ|=2|xQ+m|, 即即xQ=-2m 或或 xQ=- m.233x2+4y2=12m2,y=k(x+m)(3+4k2)x
22、2+8k2mx+4k2m2-12m2=0令令x=-2m ,得,得k=0; 令令x=- m ,得,得k=2 .623(2019东北理科卷东北理科卷) 给定抛物线给定抛物线C:y2=4x,F是是C的焦点,过点的焦点,过点F的直线的直线l与与C相交于相交于A、B两点两点. () 设设l的斜率为的斜率为1,求,求OA与与OB的夹角;的夹角; () 设设BF=FA, 假设假设4, 9,求,求l在在y轴轴上截距的变化范围上截距的变化范围. x y oABF () 由对称性,我们只须研由对称性,我们只须研究如图的情况究如图的情况. x y oABF24 ,1yxxmy ( 1 ) 当当yB=-4yA时,时,
23、234 ,44ABAABAyyymyyy 2440ymyyA=1m = .34令令x=0,得,得y1=4.3( 2 ) 当当yB=-9yA时,同理可得时,同理可得y2=3.4 m433 4,.344 3CDABE (2000新课程卷新课程卷) 如图如图, 已知梯形已知梯形ABCD中中, |AB|=2|CD|, 点点E分有向线段分有向线段AC所成的比为所成的比为,双曲线过双曲线过C、D、E三点,且以三点,且以A、B为焦点为焦点. 当当 时,求双曲线离心率时,求双曲线离心率e的取值范围的取值范围.2334由由|AE|=|EC|,xy设设|AB|=2c, 则则A(-c,0), C( , yC), 又
24、设又设E(x0, y0),2c得得 x0+c=( -x0),2cx0=(2)2(1)c|EC|= (exC+a)-(-ex0-a)=2a+e(xC+x0),由于由于|EC|=|AC|-|AE|由于由于|EC|= (exC+a)-(-ex0-a)=2a+e(xC+x0), |AE|=|EC|,x0=(2)2(1)c所以所以-ex0-a=2a+e( +x0)2c t = 0(2)2(1)xea -2et-2= 4+e(e+2t) 2e( +1)t= -(e2 +4 +2) 将将代入代入两边同乘以两边同乘以2a e2( -2)= -(e2 +4 +2) e2= 123211 由于由于2334所以所以 7 e210,得得710.e (2019天津理科卷天津理科卷)椭圆的中心是原点椭圆的中心是原点O,它的,它的短轴长为短轴长为2 ,相应于焦点,相应于焦点F(c,0)的准线的准线l与与x轴轴相交于点相交于点A,|OF|=2|FA|.过点过点A的直线与椭圆相的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度商业企业购销合同印花税税率调整与税务风险防范协议
- 2025年度代付农民工工资保障服务合同模板
- 2025年度公司法人挂名品牌授权合同
- 2025年度劳动仲裁调解协议范文:智能制造领域员工纠纷处理指南
- 2025年惠州城市职业学院单招职业适应性测试题库附答案
- 2025年澳大利亚数字商务消费者见解报告(英文版)-Wunderkind
- 2025年度宅基地永久转让与农村旅游项目投资合同
- 2024大众养老金融调研报告-太平洋保险
- 2025年度家庭紧急救援服务家政合同范例双方
- 2025年哈密职业技术学院单招职业适应性测试题库汇编
- 2025年工贸企业春节复工复产方案
- 【道法】历久弥新的思想理念课件 2024-2025学年统编版道德与法治七年级下册
- 民办中学班主任工作考核细则
- 2024年初三数学竞赛考试试题
- 20G520-1-2钢吊车梁(6m-9m)2020年合订本
- 2024年苏州经贸职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 计量泵的维护和修理知识培训讲义
- 危险化学品从业单位安全生产标准化宣贯
- 幼儿园中班开学第一课
- 招商人员薪酬及提成
- 物业保洁员培训专业课件
评论
0/150
提交评论