


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初二数学知识点第一章 一次函数1 函数的定义,函数的定义域、值域、表达式,函数的图像2 一次函数和正比例函数,包括他们的表达式、增减性、图像3 从函数的观点看方程、方程组和不等式第二章 数据的描述1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点条形图特点: (1)能够显示出每组中的具体数据; (2)易于比较数据间的差别扇形图的特点: (1)用扇形的面积来表示部分在总体中所占的百分比; (2)易于显示每组数据相对与总数的大小折线图的特点; 易于显示数据的变化趋势直方图的特点: (1)能够显示各组频数分布的情况; (2)易于显示各组之间频数的差别2 会用各
2、种统计图表示出一些实际的问题第三章 全等三角形1 全等三角形的性质: 全等三角形的对应边、对应角相等2 全等三角形的判定 边边边、边角边、角边角、角角边、直角三角形的HL定理3 角平分线的性质 角平分线上的点到角的两边的距离相等; 到角的两边距离相等的点在角的平分线上。第四章 轴对称1 轴对称图形和关于直线对称的两个图形2 轴对称的性质 轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线; 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线; 线段垂直平分线上的点到线段两个端点的距离相等; 到线段两个端点距离相等的点在这条线段的垂直平分线上3 用坐标表示轴对称
3、点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).4 等腰三角形 等腰三角形的两个底角相等;(等边对等角) 等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一) 一个三角形的两个相等的角所对的边也相等。(等角对等边) 5 等边三角形的性质和判定等边三角形的三个内角都相等,都等于60度;三个角都相等的三角形是等边三角形;有一个角是60度的等腰三角形是等边三角形; 推论:直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。在三角形中,大角对大边,大边对大角。第五章 整式 1 整式定
4、义、同类项及其合并 2 整式的加减 3 整式的乘法 (1)同底数幂的乘法: (2)幂的乘方 (3)积的乘方 (4)整式的乘法 4 乘法公式 (1)平方差公式 (2)完全平方公式 5 整式的除法 (1)同底数幂的除法 (2)整式的除法 6 因式分解 (1)提共因式法 (2)公式法 (3)十字相乘法初二下册知识点第一章 分式 1 分式及其基本性质 分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变 2 分式的运算 (1)分式的乘除 乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 (2) 分式
5、的加减 加减法法则:同分母分式相加减,分母不变,把分子相加减; 异分母分式相加减,先通分,变为同分母的分式,再加减 3 整数指数幂的加减乘除法 4 分式方程及其解法 第二章 反比例函数 1 反比例函数的表达式、图像、性质 图像:双曲线 表达式:y=k/x(k不为0) 性质:两支的增减性相同; 2 反比例函数在实际问题中的应用 第三章 勾股定理 1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方 2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。 第四章 四边形 1 平行四边形 性质:对边相等;对角相等;对角线互相平分。 判定:两组对
6、边分别相等的四边形是平行四边形; 两组对角分别相等的四边形是平行四边形; 对角线互相平分的四边形是平行四边形; 一组对边平行而且相等的四边形是平行四边形。 推论:三角形的中位线平行第三边,并且等于第三边的一半。2 特殊的平行四边形:矩形、菱形、正方形(1) 矩形性质:矩形的四个角都是直角; 矩形的对角线相等; 矩形具有平行四边形的所有性质判定: 有一个角是直角的平行四边形是矩形; 对角线相等的平行四边形是矩形; 推论: 直角三角形斜边的中线等于斜边的一半。(2) 菱形性质:菱形的四条边都相等; 菱形的对角线互相垂直,并且每一条对角线平分一组对角; 菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形; 对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部编人教版二年级语文学生阅读跟踪计划
- 智慧零售监管与服务系统创新创业项目商业计划书
- 2025年中国电动独轮车未来趋势预测分析及投资规划研究建议报告
- 2025小学美术节庆活动策划计划
- 四年级年级组新生入学适应计划
- 2020-2025年中国早餐行业市场调查研究及投资前景预测报告
- 餐饮服务员服务流程教学计划
- 2025年产科医师考试题库及答案
- 中国波浪连锁砖行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 普外科急诊响应能力计划
- 医疗设备采购计划申请论证表(空)
- 招标代理服务规范
- 小学英语新课程标准解读课件
- 新生儿气胸胸腔穿刺及闭式引流演示文稿
- 易观分析:中国生鲜电商年度综合分析2022
- GB/T 26081-2022排水工程用球墨铸铁管、管件和附件
- GB/T 36761-2018工业用乙二胺
- GB/T 26480-2011阀门的检验和试验
- GB/T 15738-2008导电和抗静电纤维增强塑料电阻率试验方法
- DB63-T 949-2020锅炉安全使用管理规范
- 控制计划CP模板
评论
0/150
提交评论