




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一一 函数和差积商的连续性函数和差积商的连续性定理定理1 1.)0)()()(),()(),()(,)(),(000处也连续处也连续在点在点则则处连续处连续在点在点若函数若函数xxgxgxfxgxfxgxfxxgxf 例如例如,),(cos,sin内连续内连续在在xx.csc,sec,cot,tan在其定义域内连续在其定义域内连续故故xxxx第九节第九节 连续函数的运算与初等函数连续函数的运算与初等函数的连续性的连续性二、反函数与复合函数的连续性二、反函数与复合函数的连续性定理定理2 2 严格单调的连续函数必有严格单调的连严格单调的连续函数必有严格单调的连续反函数续反函数. .例如例如,2,2
2、sin上单调增加且连续上单调增加且连续在在 xy. 1 , 1arcsin上也是单调增加且连续上也是单调增加且连续在在故故 xy;1 , 1arccos上上单单调调减减少少且且连连续续在在同同理理 xy.,cot,arctan上上单单调调且且连连续续在在 xarcyxy反三角函数在其定义域内皆连续反三角函数在其定义域内皆连续.定理定理3 3000000lim( ),( ),lim ( )()lim( ).xxxxxxg xuf uuf g xf ufg x 若若函函数数在在点点连连续续 则则有有极限符号可以与函数符号互换极限符号可以与函数符号互换例例1 1.)1ln(lim0 xxx 求求.
3、1 xxx10)1ln(lim 原原式式)1(limln10 xxx eln 解解例例2 2.1lim0 xexx 求求. 1 )1ln(lim0yyy 原原式式解解,1yex 令令),1ln(yx 则则. 0,0yx时时当当yyy10)1ln(1lim 同理可得同理可得.ln1lim0axaxx 00000( ),(),( ), ( ).ug xxxg xuyf uuuyf g xxx 设设函函数数在在点点连连续续 且且而而函函数数在在点点连连续续则则复复合合函函数数在在点点也也连连续续定理定理4 4注意定理注意定理4 4是定理是定理3 3的特殊情况的特殊情况. .例如例如,), 0()0,
4、(1内内连连续续在在 xu,),(sin内内连连续续在在 uy.), 0()0,(1sin内内连连续续在在 xy三、初等函数的连续性三、初等函数的连续性三角函数及反三角函数在它们的定义域内是三角函数及反三角函数在它们的定义域内是连续的连续的.)1, 0( aaayx指指数数函函数数;),(内单调且连续内单调且连续在在)1, 0(log aaxya对对数数函函数数;), 0(内单调且连续内单调且连续在在定理定理5 5 基本初等函数在定义域内是连续的基本初等函数在定义域内是连续的. . xy xaalog ,uay .log xua ,), 0(内连续内连续在在 ,不不同同值值讨讨论论 (均在其定
5、义域内连续均在其定义域内连续 )定理定理6 6 一切初等函数在其定义区间内都是连一切初等函数在其定义区间内都是连续的续的. .定义区间是指包含在定义域内的区间定义区间是指包含在定义域内的区间. .1. 初等函数仅在其定义区间内连续初等函数仅在其定义区间内连续, 在在其定义域内不一定连续其定义域内不一定连续;,)1(32 xxy, 1, 0: xxD及及在在0点的邻域内没有定义点的邻域内没有定义.), 1上连续上连续函数在区间函数在区间注意注意注意注意2. 初等函数求极限的方法代入法初等函数求极限的方法代入法.例例5 5. 1sinlim1 xxe求求1sin1 e原式原式. 1sin e例例6
6、 6.11lim20 xxx 求求解解解解)11()11)(11(lim2220 xxxxx原原式式11lim20 xxx20 . 0 )()()(lim000定定义义区区间间 xxfxfxx四、小结四、小结连续函数的和差积商的连续性连续函数的和差积商的连续性.复合函数的连续性复合函数的连续性.初等函数的连续性初等函数的连续性.定义区间与定义域的区别定义区间与定义域的区别;求极限的又一种方法求极限的又一种方法.反函数的连续性反函数的连续性.一一、 填填空空题题:1 1、 43lim20 xxx_ _ _ _ _ _ _ _ _ _ _ _ _. .2 2、 xxx11lim0_ _ _ _ _
7、 _ _ _ _ _ _ _ _. .3 3、 )2cos2ln(lim6xx _ _ _ _ _ _ _ _ _ _ _ _ _. .4 4、 xxx24tancos22lim _ _ _ _ _ _ _ _ _ _ _ _ _. .5 5、 tett1lim2_ _ _ _ _ _ _ _ _ _ _ _ _. . 6 6、设设,0,0,)( xxaxexfx 当当 a_ _ _ _ _ _时时,)(xf在在 ),( 上上连连续续 . .练练 习习 题题7 7、 函数函数61)(24 xxxxxf的连续区间为的连续区间为 _. _.8 8、 设设 时时当当时时当当1,11,2cos)(xx
8、xxxf确定确定 )(lim21xfx_; ; )(lim1xfx_._.二、二、 计算下列各极限:计算下列各极限:1 1、axaxax sinsinlim; 2 2、xxxcot20)tan31(lim ;3 3、1)1232(lim xxxx;三、三、 设设 0),ln(0,10,)(22xxxbxxxaxf已知已知)(xf在在 0 x处连续,试确处连续,试确 定定a和和b的值的值. .四、四、 设函数设函数)(xf在在0 x处连续,且处连续,且0)0( f, ,已知已知)()(xfxg ,试证函数,试证函数)(xg在在0 x处也连续处也连续. .一一、1 1、2 2; 2 2、21; 3 3、0 0; 4 4、0 0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 救生员行业发展的趋势与试题及答案
- 社区老年人护理服务可行性研究报告(参考)
- 2024年农作物种子繁育员复习的重点关注试题及答案
- 2024年体育经纪人考试突围策略与试题及答案
- 办公空间提升装修工程可行性研究报告(范文)
- 模具设计的关键技术试题及答案
- 怎样才能通过裁判员考试的试题及答案
- 2024年篮球裁判员考试的必要准备清单及试题及答案
- 关于2024年篮球裁判员考试的必考内容 试题及答案
- 农作物种子繁育员考试环境影响研究试题及答案
- 二年级下册科学不断发展的人工产品鄂教版课件
- 小学部编版六年级下册道德与法治《4、地球-我们的家园》第一课时说课稿
- DB11T 1340-2022 居住建筑节能工程施工质量验收规程
- 保险市场调查与分析实训三任务一2.3.1任务一运用Excel整理市场调查问卷数据
- 中央空调(多联机)施工方案
- PKPM砖混结构抗震及其他计算全攻略
- “育鲲”轮转叶式舵机工作原理和电气控制以及故障分析
- 流动资金自动测算表(内自带计算公式)
- 最新.尔雅批判与创意思考--冯林答案
- 宿州光伏玻璃项目可行性研究报告(范文模板)
- 10KV变电站施工方案
评论
0/150
提交评论