下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、16.4组合(2) 一、教学内容分析 本节内容是学生在学习了乘法原理、排列组合和加法原理以后的知识,学生已经掌握了简单的组合问题,并且对两个计数原理已经有了一个比较清晰的认识.因此这节课时就是让学生在原有的基础上对组合问题的解决能有进一步的深入和提高.而排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题关键是就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理
2、解了,才能举一反三、融会贯通.二、教学目标设计1.进一步掌握较复杂的组合问题;2.能正确认识组合与排列的联系与区别;3.通过练习与训练体验并掌握组合类题型;三、教学重点及难点 组合的分析与进一步的应用.四、教学用具准备多媒体设备五、教学过程设计一、 复习引入 复习我们在前几节中学习了加法原理以及组合的初步概念,请问你能说出加法原理和组合的定义吗?加法原理: 做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第n类办法中有mn种不同的方法那么完成这件事共有Nm1十m2十十mn种不同的方法. 组合:一般地,从个不同元素中取出个元素并成一组,叫做从
3、个不同元素中取出个元素的一个组合. 以上由学生口答.二、学习新课 例题分析例1、 用红、黄、蓝三色纸板各做一套卡片,每套中有A、B、C、D、E字母的卡片各一张,从这15张卡片中每次取5张,要字母不同且三色齐全,共有多少种取法?分析:取出5张卡片与顺序无关,是组合问题.而取出的5张卡片种要求三色齐全,需分两类不同的情况讨论.一类是: 含三个字母同一色,另两个字母不同色;另一类是:含两个字母同一色,另两个字母同一色,一个字母是剩下的一种颜色;(1) 在三色中取一种颜色有法,在这种颜色5张卡片中取3个字母有法,在剩下的两种颜色的卡片中各取1个字母有法, (2)在三色中取两色有法,这两种颜色的卡片中各
4、取2个字母有法,最后一种颜色只能选剩下的最后一个字母有法,根据加法原理例2、编号为1、2、3、4、5的五个人,分别坐在编号为1、2、3、4、5的座位上则至多有两人的编号与座位编号一致的坐法种数为多少?解:(排除法)至多有2个号码一致的反面是含3个号码一致,或含4个号码一致(不可能) 以及5个号码都一致;例3、一个口袋内有4个不同的红球,6个不同的白球,问(1) 从中任取4个球,红球的个数不少于白球的取法有多少种?(2) 若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7的取法有多少种?(1)解:(2)解:设取红球x个,取白球y个, 例4、从编号为1,2,3,10,11的共11
5、个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法? 解:分为三类:1奇4偶有 ;3奇2偶有;5奇1偶有 所以一共有+例5、身高互不相同的7名运动员站成一排,甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?解:(插空法)现将其余4个同学进行全排列一共有种方法,再将甲、乙、丙三名同学插入5个空位置中(但无需要进行排列)有种方法根据分步计数原理,一共有240种方法例6马路上有编号为1,2,3,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法? 解:(插空法)本题等
6、价于在7只亮着的路灯之间的6个空档中插入3只熄掉的灯,故所求方法总数为种方法例7九张卡片分别写着数字0,1,2,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?解:可以分为两类情况: 若取出6,则有种方法;若不取6,则有种方法根据分类计数原理,一共有+602种方法三、课堂小结指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通. 能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别. 学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学
7、生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题. 排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自
8、己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.四、作业布置(略)六、教学设计说明本节内容在学习了乘法原理、排列组合和加法原理以后的知识,学生已经掌握了简单的组合问题,并且对两个计数原理已经有了一个比较清晰的认识.因此,在实际学习的过程中,从排列问题引入,随即自然地过渡到组合问题.由此让学生对于排列与组合两者的异同初更深刻理解,并能更加自如地判断.本节课在教学技术上通过多媒体课件大大缩短了教师板书抄题的时间,让学生能够更加连贯的思考以及探索问题.由于是第二课时,所以在例题的设计上起点较高,层层递进,以积极发挥课堂教学的基础型和研究型功能,培养学生的基础性学力和发展性学力.在课堂教学中教师遵循“以学生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年离合器面片项目评估分析报告
- 2023年流化床干燥设备项目评估分析报告
- 草莓大棚买卖合同
- 彩钢瓦安全责任合同书
- 北京市1996年国有办公用房出让合同范本
- 糖尿病与眼底镜检查的关系
- 医院后勤食堂年终总结
- 电力计量仪表行业相关投资计划提议范本
- 儿童常见传染病的防治课件
- 温州胶鞋行业调研分析及营销指引报告
- 《相学集存》优秀课件
- (完整版)新概念青少版1a1-10测试卷
- 国家开放大学《教育组织行为与管理案例》大作业参考答案
- 2018年上半年全市中小学部分学科德育优质课评选结果
- 低压开关柜预防性试验报告
- 2023年江苏苏州工业园区管委会招聘笔试参考题库附带答案详解
- DB33-T 1261-2021 全装修住宅室内装修设计标准 附条文说明
- 优化少先队仪式教育的尝试 论文
- 【知识解析】化学促进科学技术的发展
- 语言学概论智慧树知到答案章节测试2023年广西师范大学
- 大学生职业规划-教师职业规划书范文
评论
0/150
提交评论